Feature screening algorithm for high dimensional data

Hasna Chamlal, A. Benzmane, T. Ouaderhman
{"title":"Feature screening algorithm for high dimensional data","authors":"Hasna Chamlal, A. Benzmane, T. Ouaderhman","doi":"10.23939/mmc2023.03.703","DOIUrl":null,"url":null,"abstract":"Currently, feature screening is becoming an important topic in the fields of machine learning and high-dimensional data analysis. Filtering out irrelevant features from a set of variables is considered to be an important preliminary step that should be performed before any data analysis. Many approaches have been proposed to the same topic after the work of Fan and Lv (J. Royal Stat. Soc., Ser. B. 70 (5), 849–911 (2008)), who introduced the sure screening property. However, the performance of these methods differs from one paper to another. In this work, we aim to add to this list a new algorithm performing feature screening inspired by the Kendall interaction filter (J. Appl. Stat. 50 (7), 1496–1514 (2020)) when the response variable is continuous. The good behavior of our algorithm is proved through a comparison with an existing method, proposed in this work under several simulation scenarios.","PeriodicalId":37156,"journal":{"name":"Mathematical Modeling and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modeling and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/mmc2023.03.703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, feature screening is becoming an important topic in the fields of machine learning and high-dimensional data analysis. Filtering out irrelevant features from a set of variables is considered to be an important preliminary step that should be performed before any data analysis. Many approaches have been proposed to the same topic after the work of Fan and Lv (J. Royal Stat. Soc., Ser. B. 70 (5), 849–911 (2008)), who introduced the sure screening property. However, the performance of these methods differs from one paper to another. In this work, we aim to add to this list a new algorithm performing feature screening inspired by the Kendall interaction filter (J. Appl. Stat. 50 (7), 1496–1514 (2020)) when the response variable is continuous. The good behavior of our algorithm is proved through a comparison with an existing method, proposed in this work under several simulation scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高维数据特征筛选算法
目前,特征筛选正在成为机器学习和高维数据分析领域的一个重要课题。从一组变量中过滤出不相关的特征被认为是在进行任何数据分析之前应该执行的重要的初步步骤。在范和吕(J. Royal Stat. Soc)的工作之后,对同一主题提出了许多方法。,爵士。B. 70(5), 849-911(2008)),他介绍了确定的筛选特性。然而,这些方法的性能因论文而异。在这项工作中,我们的目标是在这个列表中添加一个受Kendall交互过滤器启发的执行特征筛选的新算法。当响应变量为连续时,Stat. 50(7), 1496-1514(2020))。通过与本工作中提出的现有方法在几种仿真场景下的比较,证明了该算法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical Modeling and Computing
Mathematical Modeling and Computing Computer Science-Computational Theory and Mathematics
CiteScore
1.60
自引率
0.00%
发文量
54
期刊最新文献
Analytical images of Kepler's equation solutions and their applications Fractional Brownian motion in financial engineering models Multi-criteria decision making based on novel distance measure in intuitionistic fuzzy environment Stability analysis of a fractional model for the transmission of the cochineal Modeling the financial flows impact on the diagnosis of an enterprise's economic security level
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1