Machine learning for the analysis of quality of life using the World Happiness Index and Human Development Indicators

A. Jannani, N. Sael, F. Benabbou
{"title":"Machine learning for the analysis of quality of life using the World Happiness Index and Human Development Indicators","authors":"A. Jannani, N. Sael, F. Benabbou","doi":"10.23939/mmc2023.02.534","DOIUrl":null,"url":null,"abstract":"Machine learning algorithms play an important role in analyzing complex data in research across various fields. In this paper, we employ multiple regression algorithms and statistical techniques to investigate the relationship between objective and subjective quality of life indicators and reveal the key factors affecting happiness at the international level based on data from the Human Development Index and the World Happiness Index covering the period from 2015 to 2021. The Pearson correlation analysis showed that happiness is related to the HDI score and GNI per capita. The best-performing model for forecasting happiness was the random forest regression, with a R2 score of 0.93667, a mean squared error of 0.0033048, and a root mean squared error of 0.05748, followed by the XGBoost regression and the Decision Tree regression, respectively. These models indicated that GNI per capita is the most significant feature in predicting happiness.","PeriodicalId":37156,"journal":{"name":"Mathematical Modeling and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modeling and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/mmc2023.02.534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

Machine learning algorithms play an important role in analyzing complex data in research across various fields. In this paper, we employ multiple regression algorithms and statistical techniques to investigate the relationship between objective and subjective quality of life indicators and reveal the key factors affecting happiness at the international level based on data from the Human Development Index and the World Happiness Index covering the period from 2015 to 2021. The Pearson correlation analysis showed that happiness is related to the HDI score and GNI per capita. The best-performing model for forecasting happiness was the random forest regression, with a R2 score of 0.93667, a mean squared error of 0.0033048, and a root mean squared error of 0.05748, followed by the XGBoost regression and the Decision Tree regression, respectively. These models indicated that GNI per capita is the most significant feature in predicting happiness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用世界幸福指数和人类发展指标分析生活质量的机器学习
机器学习算法在分析各个领域研究中的复杂数据方面发挥着重要作用。本文基于2015 - 2021年人类发展指数和世界幸福指数的数据,运用多元回归算法和统计技术,研究了客观和主观生活质量指标之间的关系,揭示了国际层面影响幸福感的关键因素。Pearson相关分析显示,幸福感与HDI得分和人均GNI相关。预测幸福感的最佳模型是随机森林回归,R2值为0.93667,均方根误差为0.0033048,均方根误差为0.05748,其次是XGBoost回归和决策树回归。这些模型表明,人均国民总收入是预测幸福的最重要特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical Modeling and Computing
Mathematical Modeling and Computing Computer Science-Computational Theory and Mathematics
CiteScore
1.60
自引率
0.00%
发文量
54
期刊最新文献
Analytical images of Kepler's equation solutions and their applications Fractional Brownian motion in financial engineering models Multi-criteria decision making based on novel distance measure in intuitionistic fuzzy environment Stability analysis of a fractional model for the transmission of the cochineal Modeling the financial flows impact on the diagnosis of an enterprise's economic security level
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1