Icing Prediction of Fan Blade based on a Hybrid Model

P. Cheng, He Jing, C. Hao, Yuan Xinpan, Deng Xiaojun
{"title":"Icing Prediction of Fan Blade based on a Hybrid Model","authors":"P. Cheng, He Jing, C. Hao, Yuan Xinpan, Deng Xiaojun","doi":"10.23940/ijpe.19.11.p6.28822890","DOIUrl":null,"url":null,"abstract":"For the problem that fan blade icing failures cannot be accurately predicted in advance, a data-driven fault prediction method is proposed in this paper. Firstly, the delay window is introduced to the PCA algorithm to extract the fault mode related features from the SCADA high-dimensional data. Then, the trained Elman neural network is adopted to predict the future value of the relevant features. Finally, a BP self-clustering algorithm is designed to predict the icing fault of the blade with the multi-source data fusion. The results show that the proposed method can effectively predict the icing failure of wind turbine blades and has reference significance for the maintenance of wind turbines.","PeriodicalId":39483,"journal":{"name":"International Journal of Performability Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Performability Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23940/ijpe.19.11.p6.28822890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 7

Abstract

For the problem that fan blade icing failures cannot be accurately predicted in advance, a data-driven fault prediction method is proposed in this paper. Firstly, the delay window is introduced to the PCA algorithm to extract the fault mode related features from the SCADA high-dimensional data. Then, the trained Elman neural network is adopted to predict the future value of the relevant features. Finally, a BP self-clustering algorithm is designed to predict the icing fault of the blade with the multi-source data fusion. The results show that the proposed method can effectively predict the icing failure of wind turbine blades and has reference significance for the maintenance of wind turbines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混合模型的风机叶片结冰预测
针对风机叶片结冰故障无法提前准确预测的问题,提出了一种数据驱动的故障预测方法。首先,在PCA算法中引入延迟窗口,从SCADA高维数据中提取故障模式相关特征;然后,利用训练好的Elman神经网络对相关特征的未来值进行预测。最后,设计了基于BP自聚类的多源数据融合预测叶片结冰故障的算法。结果表明,该方法能有效预测风机叶片结冰故障,对风机维护具有参考意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Performability Engineering
International Journal of Performability Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
2.30
自引率
0.00%
发文量
56
期刊最新文献
An Adaptable Approach to Fault Tolerance in Cloud Computing Maintainability of Service-Oriented Architecture using Hybrid K-means Clustering Approach Low Power Full Adders based on Proposed Hybrid and GDI Designs: A Novel Approach Boosting X-Ray Scans Feature for Enriched Diagnosis of Pediatric Pneumonia using Deep Learning Models A Survey of Distributed Data Storage in the Cloud for Multitenant Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1