{"title":"Exploring the optical and electrical characteristics of CuO/CuCo2O4 composites","authors":"N. Deraz, H. Saleh, A. Abdel-karim","doi":"10.2298/sos2203265d","DOIUrl":null,"url":null,"abstract":"Series of CuO/CuCo2O4 composites were prepared by using the combustion method followed by heating at 750oC with different molar ratios of Cu/Co. Characterization of different composites is systematically investigated with various analytical techniques. X-ray diffraction patterns and Fourier-transform infrared spectroscopy indicate the growth of well crystalline CuCo2O4 nanoparticles with a cubic spinel structure. Images of transmission electron microscope and scanning electron microscope show a uniform particle distribution. From UV-visible spectra, the calculated optical band gaps of various solids were ranged between 1.2 and 1.8 eV. Electrical properties were measured at temperature ranged from 303 to 463 K in a frequency range from 102 to 106 Hz. The AC conductivity satisfied the Jonscher equation, especially at high frequency. The obtained data of conductivity and dielectric constant indicated that the prepared samples behave as semiconductor materials. Finally, it can be concluded that the CuO/CuCo2O4 composite showed attractive multi-functional features for electrical applications.","PeriodicalId":21592,"journal":{"name":"Science of Sintering","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Sintering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/sos2203265d","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 1
Abstract
Series of CuO/CuCo2O4 composites were prepared by using the combustion method followed by heating at 750oC with different molar ratios of Cu/Co. Characterization of different composites is systematically investigated with various analytical techniques. X-ray diffraction patterns and Fourier-transform infrared spectroscopy indicate the growth of well crystalline CuCo2O4 nanoparticles with a cubic spinel structure. Images of transmission electron microscope and scanning electron microscope show a uniform particle distribution. From UV-visible spectra, the calculated optical band gaps of various solids were ranged between 1.2 and 1.8 eV. Electrical properties were measured at temperature ranged from 303 to 463 K in a frequency range from 102 to 106 Hz. The AC conductivity satisfied the Jonscher equation, especially at high frequency. The obtained data of conductivity and dielectric constant indicated that the prepared samples behave as semiconductor materials. Finally, it can be concluded that the CuO/CuCo2O4 composite showed attractive multi-functional features for electrical applications.
期刊介绍:
Science of Sintering is a unique journal in the field of science and technology of sintering.
Science of Sintering publishes papers on all aspects of theoretical and experimental studies, which can contribute to the better understanding of the behavior of powders and similar materials during consolidation processes. Emphasis is laid on those aspects of the science of materials that are concerned with the thermodynamics, kinetics and mechanism of sintering and related processes. In accordance with the significance of disperse materials for the sintering technology, papers dealing with the question of ultradisperse powders, tribochemical activation and catalysis are also published.
Science of Sintering journal is published four times a year.
Types of contribution: Original research papers, Review articles, Letters to Editor, Book reviews.