Ruth Alvarez-Carrizal, Elizabeth Refugio-García, R. Garcia, M.F. Hernández, E. Rocha-Rangel
{"title":"Fabrication of an al2o3-1% ti composite with some characteristics of a biomaterial","authors":"Ruth Alvarez-Carrizal, Elizabeth Refugio-García, R. Garcia, M.F. Hernández, E. Rocha-Rangel","doi":"10.2298/sos2204415a","DOIUrl":null,"url":null,"abstract":"An Al2O3-1 wt.% Ti composite was prepared by powder techniques with the intention of analyzing its mechanical and chemical properties for its possible application as a biomaterial. Alumina was synthesized using the reaction bonding aluminum oxide (RBAO) process. The powders resulting from the milling stage present sizes minor than 1.5 microns. With the help of X-ray diffraction and differential thermal analysis, it was determined that aluminum oxidizes in both solid and liquid states during the RBAO process. It was also found that the alumina formation reaction in this process is completed at 1,100oC. From the measurements of mechanical properties (HV, KIC, E) in the Al2O3-1 wt.% Ti composite, it was determined that these properties are better than the same properties of compact bone. Electrochemical impedance spectroscopy, indicates that additions of 1 wt.% Ti on Al2O3 enhance its corrosion resistance. The bioactivation of a Al2O3-1 wt.% Ti composite was successful using a biomimetic method, because after 21 days, hydroxyapatite begins to proliferate on the surface of the substrate. With all these results it can be commented that it is feasible to use Al2O3-1 wt.% Ti composite in the elaboration of synthetic bone for its application as a biomaterial.","PeriodicalId":21592,"journal":{"name":"Science of Sintering","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Sintering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/sos2204415a","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
An Al2O3-1 wt.% Ti composite was prepared by powder techniques with the intention of analyzing its mechanical and chemical properties for its possible application as a biomaterial. Alumina was synthesized using the reaction bonding aluminum oxide (RBAO) process. The powders resulting from the milling stage present sizes minor than 1.5 microns. With the help of X-ray diffraction and differential thermal analysis, it was determined that aluminum oxidizes in both solid and liquid states during the RBAO process. It was also found that the alumina formation reaction in this process is completed at 1,100oC. From the measurements of mechanical properties (HV, KIC, E) in the Al2O3-1 wt.% Ti composite, it was determined that these properties are better than the same properties of compact bone. Electrochemical impedance spectroscopy, indicates that additions of 1 wt.% Ti on Al2O3 enhance its corrosion resistance. The bioactivation of a Al2O3-1 wt.% Ti composite was successful using a biomimetic method, because after 21 days, hydroxyapatite begins to proliferate on the surface of the substrate. With all these results it can be commented that it is feasible to use Al2O3-1 wt.% Ti composite in the elaboration of synthetic bone for its application as a biomaterial.
期刊介绍:
Science of Sintering is a unique journal in the field of science and technology of sintering.
Science of Sintering publishes papers on all aspects of theoretical and experimental studies, which can contribute to the better understanding of the behavior of powders and similar materials during consolidation processes. Emphasis is laid on those aspects of the science of materials that are concerned with the thermodynamics, kinetics and mechanism of sintering and related processes. In accordance with the significance of disperse materials for the sintering technology, papers dealing with the question of ultradisperse powders, tribochemical activation and catalysis are also published.
Science of Sintering journal is published four times a year.
Types of contribution: Original research papers, Review articles, Letters to Editor, Book reviews.