The effect of the addition of construction & demolition waste on the properties of clay-based ceramics

IF 1.4 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS Science of Sintering Pub Date : 2022-01-01 DOI:10.2298/sos2203359a
B. Angjusheva, V. Ducman, E. Fidanchevski
{"title":"The effect of the addition of construction & demolition waste on the properties of clay-based ceramics","authors":"B. Angjusheva, V. Ducman, E. Fidanchevski","doi":"10.2298/sos2203359a","DOIUrl":null,"url":null,"abstract":"Waste glass and reclaimed brick are types of construction and demolition waste (C&DW) that could potentially be used as secondary raw materials in the production of ceramics. Ceramics based on clay, waste demolished brick (5-15 wt.%) and waste glass (5-20 wt.%) were produced by pressing (P = 68 MPa) and subsequently sintered at 900, 950, 1000, and 1050 oC for one hour. The physical and mechanical properties of the ceramics obtained were evaluated. The addition of demolished brick decreased the density and mechanical properties of the clay specimens and increased the water absorption. The incorporation of waste glass improved the sintering behavior and its mechanical properties. The addition of 20 wt.% waste glass and 10 wt.% waste demolished brick into the clay matrix improved the flexural strength by up to 20.6 % and decreased the water absorption by up to 22 %. The approach presented promotes an opportunity to recycle construction and demolition waste into alternative resource materials, and represents a positive contribution to the environment.","PeriodicalId":21592,"journal":{"name":"Science of Sintering","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Sintering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/sos2203359a","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 1

Abstract

Waste glass and reclaimed brick are types of construction and demolition waste (C&DW) that could potentially be used as secondary raw materials in the production of ceramics. Ceramics based on clay, waste demolished brick (5-15 wt.%) and waste glass (5-20 wt.%) were produced by pressing (P = 68 MPa) and subsequently sintered at 900, 950, 1000, and 1050 oC for one hour. The physical and mechanical properties of the ceramics obtained were evaluated. The addition of demolished brick decreased the density and mechanical properties of the clay specimens and increased the water absorption. The incorporation of waste glass improved the sintering behavior and its mechanical properties. The addition of 20 wt.% waste glass and 10 wt.% waste demolished brick into the clay matrix improved the flexural strength by up to 20.6 % and decreased the water absorption by up to 22 %. The approach presented promotes an opportunity to recycle construction and demolition waste into alternative resource materials, and represents a positive contribution to the environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺加建筑垃圾对粘土基陶瓷性能的影响
废玻璃和再生砖是建筑和拆除垃圾(C&DW)的类型,可能被用作陶瓷生产的二次原料。以粘土、废拆砖(5-15 wt.%)和废玻璃(5-20 wt.%)为原料,通过压压(P = 68 MPa)生产陶瓷,随后在900、950、1000和1050℃下烧结1小时。对所得陶瓷的物理力学性能进行了评价。拆除砖的加入降低了粘土试件的密度和力学性能,增加了吸水率。废玻璃的掺入改善了烧结性能和力学性能。在粘土基体中加入20%的废玻璃和10%的废拆除砖,其抗折强度提高了20.6%,吸水率降低了22%。所提出的方法促进了将建筑和拆除废物回收为替代资源材料的机会,并代表了对环境的积极贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science of Sintering
Science of Sintering 工程技术-材料科学:硅酸盐
CiteScore
2.50
自引率
46.70%
发文量
20
审稿时长
3.3 months
期刊介绍: Science of Sintering is a unique journal in the field of science and technology of sintering. Science of Sintering publishes papers on all aspects of theoretical and experimental studies, which can contribute to the better understanding of the behavior of powders and similar materials during consolidation processes. Emphasis is laid on those aspects of the science of materials that are concerned with the thermodynamics, kinetics and mechanism of sintering and related processes. In accordance with the significance of disperse materials for the sintering technology, papers dealing with the question of ultradisperse powders, tribochemical activation and catalysis are also published. Science of Sintering journal is published four times a year. Types of contribution: Original research papers, Review articles, Letters to Editor, Book reviews.
期刊最新文献
Effect of glass powder on the friction performance of automotive brake lining materials Production of Ni-Co-bronze composites with different tic composition by hot pressing The influence of boron addition on properties of copper-zirconium alloys Novel basalt-stainless steel composite materials with improved fracture toughness Cavitation resistance of the material PA 3200 GF produced by selective laser sintering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1