Arianit A. Reka, D. Kosanović, Egzon Ademi, P. Aggrey, Avni Berisha, B. Pavlovski, G. Jovanovski, Besnik Rexhepi, Ahmed Jashari, P. Makreski
{"title":"Fabrication of ceramic monoliths from diatomaceous earth: effects of calcination temperature on silica phase transformation","authors":"Arianit A. Reka, D. Kosanović, Egzon Ademi, P. Aggrey, Avni Berisha, B. Pavlovski, G. Jovanovski, Besnik Rexhepi, Ahmed Jashari, P. Makreski","doi":"10.2298/sos2204495r","DOIUrl":null,"url":null,"abstract":"The raw diatomaceous earth from the vicinity of Bitola (North Macedonia) showed low bulk density (0.61-0.69 g/cm3), high-water absorption (75-81%) and porosity (66- 72%). The chemical composition was determined with ICP-MS, revealing the following results for the diatomaceous earth: SiO2 (63.69 wt%), Al2O3 (11.79 wt%), Fe2O3 (5.95 wt%), MnO (0.15 wt%), TiO2 (0.65 wt%), CaO (1.51 wt%), MgO (2.24 wt%), P2O5 (0.13 wt%), K2O (1.64 wt%), Na2O (0.93 wt%), LOI (11.21 wt%). XRPD data of the examined sample of clayey diatomite mainly depicted crystalline behavior with a small presence of amorphous phase. The crystalline mineral phases mainly comprise: silica (quartz), feldspars (plagioclase), mica (muscovite), chlorites and dolomite. SEM and TEM results show cased presence of micro- and nanostructures with pores ranging from 250 to 600 nm. The clayey diatomite was sintered at three temperatures (900, 1000 and 1100?C) for a period of 1 h. XRPD of the sintered samples at 1100?C showed certain thermal stability and formation of new phases (mullite and tridymite) that makes the analyzed diatomaceous earth suitable for production of various types of ceramic, construction and thermal insulating materials.","PeriodicalId":21592,"journal":{"name":"Science of Sintering","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Sintering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/sos2204495r","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The raw diatomaceous earth from the vicinity of Bitola (North Macedonia) showed low bulk density (0.61-0.69 g/cm3), high-water absorption (75-81%) and porosity (66- 72%). The chemical composition was determined with ICP-MS, revealing the following results for the diatomaceous earth: SiO2 (63.69 wt%), Al2O3 (11.79 wt%), Fe2O3 (5.95 wt%), MnO (0.15 wt%), TiO2 (0.65 wt%), CaO (1.51 wt%), MgO (2.24 wt%), P2O5 (0.13 wt%), K2O (1.64 wt%), Na2O (0.93 wt%), LOI (11.21 wt%). XRPD data of the examined sample of clayey diatomite mainly depicted crystalline behavior with a small presence of amorphous phase. The crystalline mineral phases mainly comprise: silica (quartz), feldspars (plagioclase), mica (muscovite), chlorites and dolomite. SEM and TEM results show cased presence of micro- and nanostructures with pores ranging from 250 to 600 nm. The clayey diatomite was sintered at three temperatures (900, 1000 and 1100?C) for a period of 1 h. XRPD of the sintered samples at 1100?C showed certain thermal stability and formation of new phases (mullite and tridymite) that makes the analyzed diatomaceous earth suitable for production of various types of ceramic, construction and thermal insulating materials.
期刊介绍:
Science of Sintering is a unique journal in the field of science and technology of sintering.
Science of Sintering publishes papers on all aspects of theoretical and experimental studies, which can contribute to the better understanding of the behavior of powders and similar materials during consolidation processes. Emphasis is laid on those aspects of the science of materials that are concerned with the thermodynamics, kinetics and mechanism of sintering and related processes. In accordance with the significance of disperse materials for the sintering technology, papers dealing with the question of ultradisperse powders, tribochemical activation and catalysis are also published.
Science of Sintering journal is published four times a year.
Types of contribution: Original research papers, Review articles, Letters to Editor, Book reviews.