Changes in the physicochemical properties of geopolymer gels as a function of NaOH concentration

IF 1.4 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS Science of Sintering Pub Date : 2023-01-01 DOI:10.2298/sos220624020n
M. Nenadovic, M. Ivanović, Danilo Kisić, N. Bundaleski, V. Pavlović, Sanja Knežević, Ljiljana M. Kljajević
{"title":"Changes in the physicochemical properties of geopolymer gels as a function of NaOH concentration","authors":"M. Nenadovic, M. Ivanović, Danilo Kisić, N. Bundaleski, V. Pavlović, Sanja Knežević, Ljiljana M. Kljajević","doi":"10.2298/sos220624020n","DOIUrl":null,"url":null,"abstract":"In the present paper, polymerization of alkali activated metakaolin (MK) and its structural changing, using 2M NaOH, 8M NaOH, and 16M NaOH solutions were followed by means of X-ray photoelectron spectroscopy (XPS), Diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), Raman spectroscopy and Scanning electron microscopy (SEM). XPS analysis revealed that changing of NaOH concentration did not affect the types of formed bonds in the material. At the same time, the amount of sodium and aluminum increased with the NaOH molarity. The latter steps could be especially interesting because it may indicate the possibility of 'dosing' the amount of Al incorporated by changing the NaOH concentration in the solution. DRIFT analysis revealed that the absorption band for AlIV located at 800 cm-1 is shifted towards the smaller values. Changing the concentration of NaOH, the chemical content did not change, but the structural changes are observed. Raman spectroscopy detected that the most dominant peaks at ?400 cm-1 and 519 cm-1 originate from Si-O-Al and Si-O-Si bending modes. With increasing the NaOH concentration, peaks at 1019-1060 cm-1 become more prominent as a result of polymerization. Both analyzes (DRIFT and Raman) confirmed the presence of quartz. SEM analysis showed that different structures are created by changing the concentration of NaOH.","PeriodicalId":21592,"journal":{"name":"Science of Sintering","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Sintering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/sos220624020n","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the present paper, polymerization of alkali activated metakaolin (MK) and its structural changing, using 2M NaOH, 8M NaOH, and 16M NaOH solutions were followed by means of X-ray photoelectron spectroscopy (XPS), Diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), Raman spectroscopy and Scanning electron microscopy (SEM). XPS analysis revealed that changing of NaOH concentration did not affect the types of formed bonds in the material. At the same time, the amount of sodium and aluminum increased with the NaOH molarity. The latter steps could be especially interesting because it may indicate the possibility of 'dosing' the amount of Al incorporated by changing the NaOH concentration in the solution. DRIFT analysis revealed that the absorption band for AlIV located at 800 cm-1 is shifted towards the smaller values. Changing the concentration of NaOH, the chemical content did not change, but the structural changes are observed. Raman spectroscopy detected that the most dominant peaks at ?400 cm-1 and 519 cm-1 originate from Si-O-Al and Si-O-Si bending modes. With increasing the NaOH concentration, peaks at 1019-1060 cm-1 become more prominent as a result of polymerization. Both analyzes (DRIFT and Raman) confirmed the presence of quartz. SEM analysis showed that different structures are created by changing the concentration of NaOH.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
地聚合物凝胶的物理化学性质随NaOH浓度的变化
本文采用x射线光电子能谱(XPS)、漫反射红外傅立叶变换光谱(DRIFT)、拉曼光谱(Raman)和扫描电子显微镜(SEM)等手段,研究了在2M NaOH、8M NaOH和16M NaOH溶液中碱活化偏高岭土(MK)的聚合及其结构变化。XPS分析表明,NaOH浓度的变化对材料中形成键的类型没有影响。同时,随着NaOH摩尔浓度的增加,钠和铝的含量也随之增加。后面的步骤可能特别有趣,因为它可能表明通过改变溶液中的NaOH浓度来“定量”掺入Al的量的可能性。漂移分析表明,AlIV位于800 cm-1的吸收带向较小的值偏移。改变NaOH浓度,化学成分没有变化,但结构发生变化。拉曼光谱检测到- 400 cm-1和519 cm-1处的主要峰来自Si-O-Al和Si-O-Si弯曲模式。随着NaOH浓度的增加,1019 ~ 1060 cm-1处的峰由于聚合而变得更加突出。两种分析(DRIFT和拉曼)都证实了石英的存在。SEM分析表明,改变NaOH浓度会产生不同的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science of Sintering
Science of Sintering 工程技术-材料科学:硅酸盐
CiteScore
2.50
自引率
46.70%
发文量
20
审稿时长
3.3 months
期刊介绍: Science of Sintering is a unique journal in the field of science and technology of sintering. Science of Sintering publishes papers on all aspects of theoretical and experimental studies, which can contribute to the better understanding of the behavior of powders and similar materials during consolidation processes. Emphasis is laid on those aspects of the science of materials that are concerned with the thermodynamics, kinetics and mechanism of sintering and related processes. In accordance with the significance of disperse materials for the sintering technology, papers dealing with the question of ultradisperse powders, tribochemical activation and catalysis are also published. Science of Sintering journal is published four times a year. Types of contribution: Original research papers, Review articles, Letters to Editor, Book reviews.
期刊最新文献
Effect of glass powder on the friction performance of automotive brake lining materials Production of Ni-Co-bronze composites with different tic composition by hot pressing The influence of boron addition on properties of copper-zirconium alloys Novel basalt-stainless steel composite materials with improved fracture toughness Cavitation resistance of the material PA 3200 GF produced by selective laser sintering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1