Cobalt supported chitosan-derived carbon-smectite catalyst in Oxone® induced dye degradation

IF 1.4 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS Science of Sintering Pub Date : 2023-01-01 DOI:10.2298/sos230427037s
G. Stevanović, N. Jović-Jovičić, A. Popovič, B. Dojčinović, A. Milutinović-Nikolić, P. Banković, M. Ajdukovic
{"title":"Cobalt supported chitosan-derived carbon-smectite catalyst in Oxone® induced dye degradation","authors":"G. Stevanović, N. Jović-Jovičić, A. Popovič, B. Dojčinović, A. Milutinović-Nikolić, P. Banković, M. Ajdukovic","doi":"10.2298/sos230427037s","DOIUrl":null,"url":null,"abstract":"Catalytic degradation of tartrazine in the presence of Oxone? activated by a catalyst constituted of cobalt supported on a nanocomposite of smectite with chitosan-derived carbon was investigated. The catalyst was synthesized using cobalt impregnation followed by carbonization at 773 K in an inert atmosphere. The synthesized catalyst was previously fully characterized using appropriate characterization methods, including XRPD, XPS, FTIR, HR-TEM, and low-temperature N2-physisorption analysis. The catalytic experiments were performed by varying different experimental parameters (dye concentration, Oxone? concentration, temperature, and initial pH of the reaction solution). The kinetic and thermodynamic parameters were estimated from the experimental results. The kinetics data showed the best fit with the pseudo-first-order kinetics model. The activation energy of the investigated degradation process was calculated according to the Arrhenius equation. The catalyst showed excellent performance at low temperatures even at 298 K, and in the wide range of pH values.","PeriodicalId":21592,"journal":{"name":"Science of Sintering","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Sintering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/sos230427037s","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Catalytic degradation of tartrazine in the presence of Oxone? activated by a catalyst constituted of cobalt supported on a nanocomposite of smectite with chitosan-derived carbon was investigated. The catalyst was synthesized using cobalt impregnation followed by carbonization at 773 K in an inert atmosphere. The synthesized catalyst was previously fully characterized using appropriate characterization methods, including XRPD, XPS, FTIR, HR-TEM, and low-temperature N2-physisorption analysis. The catalytic experiments were performed by varying different experimental parameters (dye concentration, Oxone? concentration, temperature, and initial pH of the reaction solution). The kinetic and thermodynamic parameters were estimated from the experimental results. The kinetics data showed the best fit with the pseudo-first-order kinetics model. The activation energy of the investigated degradation process was calculated according to the Arrhenius equation. The catalyst showed excellent performance at low temperatures even at 298 K, and in the wide range of pH values.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钴负载壳聚糖衍生的碳蒙脱石催化剂在Oxone®诱导染料降解
氧酮存在下酒黄石的催化降解研究了壳聚糖碳-蒙脱石纳米复合材料负载钴催化剂的活化作用。采用钴浸渍法,在773 K的惰性气氛下碳化合成催化剂。合成的催化剂之前使用适当的表征方法进行了充分的表征,包括XRPD, XPS, FTIR, HR-TEM和低温n2物理吸附分析。通过改变不同的实验参数(染料浓度、Oxone?反应溶液的浓度、温度和初始pH值)。根据实验结果估计了其动力学和热力学参数。动力学数据与拟一级动力学模型拟合最佳。根据Arrhenius方程计算了所研究降解过程的活化能。该催化剂在298k的低温和较宽的pH值范围内均表现出优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science of Sintering
Science of Sintering 工程技术-材料科学:硅酸盐
CiteScore
2.50
自引率
46.70%
发文量
20
审稿时长
3.3 months
期刊介绍: Science of Sintering is a unique journal in the field of science and technology of sintering. Science of Sintering publishes papers on all aspects of theoretical and experimental studies, which can contribute to the better understanding of the behavior of powders and similar materials during consolidation processes. Emphasis is laid on those aspects of the science of materials that are concerned with the thermodynamics, kinetics and mechanism of sintering and related processes. In accordance with the significance of disperse materials for the sintering technology, papers dealing with the question of ultradisperse powders, tribochemical activation and catalysis are also published. Science of Sintering journal is published four times a year. Types of contribution: Original research papers, Review articles, Letters to Editor, Book reviews.
期刊最新文献
Effect of glass powder on the friction performance of automotive brake lining materials Production of Ni-Co-bronze composites with different tic composition by hot pressing The influence of boron addition on properties of copper-zirconium alloys Novel basalt-stainless steel composite materials with improved fracture toughness Cavitation resistance of the material PA 3200 GF produced by selective laser sintering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1