РОЗВИТОК І ТРАНСФОРМАЦІЯ ПОНЯТТЯ BIG DATA

К. О. Кірей
{"title":"РОЗВИТОК І ТРАНСФОРМАЦІЯ ПОНЯТТЯ BIG DATA","authors":"К. О. Кірей","doi":"10.24025/2306-4412.1.2019.164787","DOIUrl":null,"url":null,"abstract":"The article discusses the development and transformation of Big Data concept (Big Data). This concept does not have a clear interpretation today. Theoretical research has shown that it is reasonable to consider its development in a historical context. Initially it has been considered that the data flow, bigger than 100 Gb a day, is, first of all, a criterion of reference to category Big Data. However, it has turned out that this is not enough to clearly categorize the product as Big Data. Subsequently as such a criterion qualitative signs, that is “a certain number of V”: Volume – a significant increase in the amount of data in corporate systems; Variety – a variety of formats and structures of available data; Velocity – the speed of receiving and processing data to satisfy the request, etc., have been used. However, this approach does not fully disclose this concept, but deals with its individual aspects. In other studies, you can find the definition of this concept as the inability to process data in traditional ways. However, such a definition can already be considered obsolete, since experts no longer refer technologies for processing large volumes of data to the latest ones. Some experts suggest to abandon this concept altogether. However, due to its wide spread, this is not possible. The development of information technologies has changed our attitude to data and information, and this, in its turn, has influenced the essence of Big Data concept. Now this rather means a special approach – the ideology of processing large amounts of \"raw\" data. However, it is possible that in future this concept may disappear as outdated and irrelevant one, because large amounts of data and modern approaches to their processing may become common tools and there will be no need to focus on their innovative component.","PeriodicalId":34054,"journal":{"name":"Visnik Cherkas''kogo derzhavnogo tekhnologichnogo universitetu","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visnik Cherkas''kogo derzhavnogo tekhnologichnogo universitetu","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24025/2306-4412.1.2019.164787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The article discusses the development and transformation of Big Data concept (Big Data). This concept does not have a clear interpretation today. Theoretical research has shown that it is reasonable to consider its development in a historical context. Initially it has been considered that the data flow, bigger than 100 Gb a day, is, first of all, a criterion of reference to category Big Data. However, it has turned out that this is not enough to clearly categorize the product as Big Data. Subsequently as such a criterion qualitative signs, that is “a certain number of V”: Volume – a significant increase in the amount of data in corporate systems; Variety – a variety of formats and structures of available data; Velocity – the speed of receiving and processing data to satisfy the request, etc., have been used. However, this approach does not fully disclose this concept, but deals with its individual aspects. In other studies, you can find the definition of this concept as the inability to process data in traditional ways. However, such a definition can already be considered obsolete, since experts no longer refer technologies for processing large volumes of data to the latest ones. Some experts suggest to abandon this concept altogether. However, due to its wide spread, this is not possible. The development of information technologies has changed our attitude to data and information, and this, in its turn, has influenced the essence of Big Data concept. Now this rather means a special approach – the ideology of processing large amounts of "raw" data. However, it is possible that in future this concept may disappear as outdated and irrelevant one, because large amounts of data and modern approaches to their processing may become common tools and there will be no need to focus on their innovative component.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大数据
本文探讨了大数据概念(Big Data)的发展与转化。这个概念在今天没有明确的解释。理论研究表明,将其发展置于历史背景中考虑是合理的。最初认为,每天大于100gb的数据流首先是大数据类的参考标准。然而,事实证明,这还不足以将产品明确归类为大数据。随后作为这样一个定性标志的标准,即“一定数量的V”:Volume——企业系统中数据量的显著增加;多样性——可用数据的多种格式和结构;速度-接收和处理数据的速度,以满足请求等,已使用。然而,这种方法并没有完全揭示这个概念,而是处理它的各个方面。在其他研究中,您可以发现这个概念的定义是无法以传统方式处理数据。然而,这样的定义已经可以被认为是过时的,因为专家们不再将处理大量数据的技术参考最新的技术。一些专家建议完全放弃这一概念。然而,由于它的广泛传播,这是不可能的。信息技术的发展改变了我们对数据和信息的态度,这反过来又影响了大数据概念的本质。这意味着一种特殊的方法——处理大量“原始”数据的思想。然而,在未来,这个概念可能会因为过时和不相关而消失,因为大量数据和现代处理方法可能会成为通用工具,并且不需要关注其创新组件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
6
审稿时长
8 weeks
期刊最新文献
ПЛОСКА ДЕФОРМАЦІЯ П’ЄЗОЕЛЕКТРИЧНОГО БІМАТЕРІАЛУ З ДВОМА ЕЛЕКТРОПРОВІДНИМИ ЕЛЕКТРИЧНО ЗАРЯДЖЕНИМИ МІЖФАЗНИМИ ТРІЩИНАМИ ВІРТУАЛЬНИЙ ІНСТРУМЕНТАРІЙ ДЛЯ ДОСЛІДЖЕННЯ ХВИЛЕВОДУ ПРЯМОКУТНОГО ПЕРЕТИНУ ДОСЛІДЖЕННЯ ФАЗОВИХ ПЛОЩИН МОДЕЛІ ІМУНОСЕНСОРА НА ПРЯМОКУТНІЙ РЕШІТЦІ З ВИКОРИСТАННЯМ ДИФЕРЕНЦІАЛЬНИХ РІВНЯНЬ ІЗ ЗАПІЗНЕННЯМ В ПАКЕТІ R ОСОБЛИВОСТІ ПРОЕКТІВ ВІТРОЕНЕРГЕТИКИ ТА СПЕЦИФІКА УПРАВЛІННЯ НИМИ ЗАВАДОСТІЙКІСТЬ МОДЕМА МНОЖИННОГО ДОСТУПУ ШУМОВИХ СИГНАЛІВ З УРАХУВАННЯМ ВПЛИВУ КВАДРАТИЧНОЇ СКЛАДОВОЇ
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1