Empirical probability distribution validity based on accumulating statistics of observations by controlling the moving average and root-mean-square deviation

{"title":"Empirical probability distribution validity based on accumulating statistics of observations by controlling the moving average and root-mean-square deviation","authors":"","doi":"10.26565/2304-6201-2020-45-08","DOIUrl":null,"url":null,"abstract":"Knowing probability distributions for calculating expected values is always required in the engineering practice and other fields. Commonly, probability distributions are not always available. Moreover, the distribution type may not be reliably determined. In this case, an empirical distribution should be built directly from the observations. Therefore, the goal is to develop a methodology of accumulating and processing observation data so that the respective empirical distribution would be close enough to the unknown real distribution. For this, criteria regarding sufficiency of observations and the distribution validity are to be substantiated. As a result, a methodology is presente О.М. Мелкозьорова1, С.Г. Рассомахінd that considers the empirical probability distribution validity with respect to the parameter’s expected value. Values of the parameter are registered during a period of observations or measurements of the parameter. On this basis, empirical probabilities are calculated, where every next period the previous registration data are used as well. Every period gives an approximation to the parameter’s expected value using those empirical probabilities. The methodology using the moving averages and root-mean-square deviations asserts that the respective empirical distribution is valid (i.e., it is sufficiently close to the unknown real distribution) if the parameter’s expected value approximations become scattered very little for at least the three window multiple-of-2 widths by three successive windows. This criterion also implies the sufficiency of observation periods, although the sufficiency of observations per period is not claimed. The validity strongly depends on the volume of observations per period.","PeriodicalId":33695,"journal":{"name":"Visnik Kharkivs''kogo natsional''nogo universitetu imeni VN Karazina Seriia Matematichne modeliuvannia informatsiini tekhnologiyi avtomatizovani sistemi upravlinnia","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visnik Kharkivs''kogo natsional''nogo universitetu imeni VN Karazina Seriia Matematichne modeliuvannia informatsiini tekhnologiyi avtomatizovani sistemi upravlinnia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26565/2304-6201-2020-45-08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Knowing probability distributions for calculating expected values is always required in the engineering practice and other fields. Commonly, probability distributions are not always available. Moreover, the distribution type may not be reliably determined. In this case, an empirical distribution should be built directly from the observations. Therefore, the goal is to develop a methodology of accumulating and processing observation data so that the respective empirical distribution would be close enough to the unknown real distribution. For this, criteria regarding sufficiency of observations and the distribution validity are to be substantiated. As a result, a methodology is presente О.М. Мелкозьорова1, С.Г. Рассомахінd that considers the empirical probability distribution validity with respect to the parameter’s expected value. Values of the parameter are registered during a period of observations or measurements of the parameter. On this basis, empirical probabilities are calculated, where every next period the previous registration data are used as well. Every period gives an approximation to the parameter’s expected value using those empirical probabilities. The methodology using the moving averages and root-mean-square deviations asserts that the respective empirical distribution is valid (i.e., it is sufficiently close to the unknown real distribution) if the parameter’s expected value approximations become scattered very little for at least the three window multiple-of-2 widths by three successive windows. This criterion also implies the sufficiency of observation periods, although the sufficiency of observations per period is not claimed. The validity strongly depends on the volume of observations per period.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
经验概率分布的有效性是通过控制移动平均和均方根偏差来积累观测值的统计量
在工程实践和其他领域中,总是需要知道概率分布来计算期望值。通常,概率分布并不总是可用的。此外,分布类型可能无法可靠地确定。在这种情况下,经验分布应该直接从观察中建立。因此,目标是发展一种积累和处理观测数据的方法,使各自的经验分布足够接近未知的实际分布。为此,关于观察的充分性和分布有效性的标准必须得到证实。因此,提出了一种方法О.М。Мелкозьорова1,СГ。Рассомахінd,它考虑相对于参数期望值的经验概率分布有效性。参数的值是在对参数进行一段时间的观测或测量期间登记的。在此基础上,计算经验概率,其中每个下一个时期也使用以前的注册数据。每个周期使用这些经验概率给出参数期望值的近似值。使用移动平均线和均方根偏差的方法断言,如果参数的期望值近似值在三个连续窗口的至少三个窗口的2倍宽度中变得很少分散,则各自的经验分布是有效的(即,它与未知的实际分布足够接近)。这一标准也意味着观察期的充分性,尽管没有要求每一观察期的充分性。有效性很大程度上取决于每个周期的观测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Ontological model for evaluating the effectiveness of scientific institutions Investigation of the chaotic dynamics of the vertical strance of a human body on the model of an inverted pendulum The mathematical model of the thermal process in Spoke-Type Permanent Magnet Synchronous Machines Statistical analysis of coronary blood flow monitoring data for hemodynamic assessment of the degree of coronary artery stenosis Flow modelling in a straight hard-walled duct with two rectangular axisymmetric narrowings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1