{"title":"High-Efficiency Transmissive Programmable Metasurface for Multimode OAM Generation","authors":"Xudong Bai, Fanwei Kong, Yuntao Sun, Guanfu Wang, Jingyi Qian, Xianbin Li, Anjie Cao, Chong He, Xianling Liang, Ronghong Jin, Weiren Zhu","doi":"10.1002/adom.202000570","DOIUrl":null,"url":null,"abstract":"<p>Metasurfaces have been extensively studied for generating electromagnetic waves carrying orbital angular momentum (OAM). In particular, programmable metasurfaces enable real-time switching between multiple OAM modes in a digital manner. However, the current programmable metasurfaces are mostly based on reflective mode, which suffer from low efficiency as well as serious feed blockage. In this paper, a transmissive programmable metasurface is presented for the highly efficient generation of multimode convergent OAM beams. The proposed transmissive metasurface is composed of electronically reconfigurable units with 1-bit phase resolution (0/π), which are obtained by integrating two PIN diodes in the radiating layer for current direction modulation. Through the antisymmetry configuration of the two PIN diodes, nearly uniform transmission magnitudes but inversed phase states in a wide band can be obtained. The simulation results show that the proposed reconfigurable unit can achieve good 1-bit phase tuning, with minimum insertion loss of 0.2 dB and 2 dB transmission bandwidth of more than 10%. Through the dynamic modulation of the quantized code distributions on the metasurface, programmable multimode OAM beams can thus be constructed. Both simulated and measured results verify the effectiveness of the proposed design.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"8 17","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2020-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/adom.202000570","citationCount":"132","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202000570","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 132
Abstract
Metasurfaces have been extensively studied for generating electromagnetic waves carrying orbital angular momentum (OAM). In particular, programmable metasurfaces enable real-time switching between multiple OAM modes in a digital manner. However, the current programmable metasurfaces are mostly based on reflective mode, which suffer from low efficiency as well as serious feed blockage. In this paper, a transmissive programmable metasurface is presented for the highly efficient generation of multimode convergent OAM beams. The proposed transmissive metasurface is composed of electronically reconfigurable units with 1-bit phase resolution (0/π), which are obtained by integrating two PIN diodes in the radiating layer for current direction modulation. Through the antisymmetry configuration of the two PIN diodes, nearly uniform transmission magnitudes but inversed phase states in a wide band can be obtained. The simulation results show that the proposed reconfigurable unit can achieve good 1-bit phase tuning, with minimum insertion loss of 0.2 dB and 2 dB transmission bandwidth of more than 10%. Through the dynamic modulation of the quantized code distributions on the metasurface, programmable multimode OAM beams can thus be constructed. Both simulated and measured results verify the effectiveness of the proposed design.
期刊介绍:
Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.