Evaluation of a new methane calibration system at JMA for WCC Round Robin experiments

Q4 Earth and Planetary Sciences Papers in Meteorology and Geophysics Pub Date : 2018-01-01 DOI:10.2467/MRIPAPERS.67.57
H. Matsueda, K. Tsuboi, Shinya Takatsuji, Teruo Kawasaki, Masamichi Nakamura, Kazuyuki Saito, A. Takizawa, Kohshiro Dehara, Shuichi Hosokawa
{"title":"Evaluation of a new methane calibration system at JMA for WCC Round Robin experiments","authors":"H. Matsueda, K. Tsuboi, Shinya Takatsuji, Teruo Kawasaki, Masamichi Nakamura, Kazuyuki Saito, A. Takizawa, Kohshiro Dehara, Shuichi Hosokawa","doi":"10.2467/MRIPAPERS.67.57","DOIUrl":null,"url":null,"abstract":"A new calibration system of methane (CH4) standard gases by using a wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) analyzer was developed at the Japan Meteorological Agency (JMA) in collaboration with the Meteorological Research Institute. We used two sets of CH4 primary standard gases with mole fractions assigned based on the World Meteorological Organization (WMO) CH4 mole fraction scale maintained by the National Oceanic and Atmospheric Administration to test the performance of the new WS-CRDS calibration system. Our results showed high repeatability (0.06 nmol mol) and reproducibility (0.07 nmol mol) of measurements and good linearity against the WMO CH4 mole fraction scale. The CH4 calibration results for the new system agree well with those of the previous JMA calibration system, which employed a gas chromatograph with a flame ionization detector (GC/FID). These tests indicate that the new WS-CRDS CH4 calibration system at JMA will provide results that are consistent with those of the previous GC/FID system but with precision that is one order of magnitude higher. We also evaluated the stability and consistency of the JMA calibrations over the past 10 years by examining data from the World Calibration Centre (WCC) Round Robin comparison experiments in Asia and the regions in the southwest Pacific. The results of our study clearly demonstrate that the new calibration system will provide more precise CH4 measurements and improved traceability to the WMO scale of atmospheric CH4 measurements for the JMA/WCC comparisons. Corresponding address: Oceanography and Geochemistry Research Department, Meteorological Research Institute 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan. E-mail: hmatsued@mri-jma.go.jp © 2018 by the Japan Meteorological Agency / Meteorological Research Institute Matsueda, H. et al. Vol. 67 58 much as ~10 nmol mol; this value is considerably larger than the analytical precisions of ~1−2 nmol mol at individual laboratories (e.g., Matsueda et al., 2004; Dlugokencky et al., 2005; Tsuboi et al., 2017). Careful and regular calibration of measuring devices and comparison of calibration scales among laboratories are fundamental requirements for analyses of global observation data. The World Meteorological Organization (WMO) Global Atmosphere Watch (GAW) programme coordinates systematic observations and analyses of atmospheric CH4 and other trace gas species (http://www.wmo.int/gaw). Measurement data are posted by WMO/GAW participating laboratories and archived and distributed by the World Data Centre for Greenhouse Gases (WDCGG) at the Japan Meteorological Agency (JMA). The WMO/GAW programme strives to achieve compatibility among participating laboratories of ±2 nmol mol for measurements of CH4 in well-mixed background air (WMO, 2016); this precision is deemed sufficient for detection of global trends related to climate change. The WMO/ GAW requires datasets to be traceable to a common reference. The National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory has developed a gravimetric scale (NOAA04) that has been accepted as the WMO CH4 mole fraction scale (Dlugokencky et al., 2005). NOAA operates the Central Calibration Laboratory (CCL) for CH4, which maintains and distributes the WMO mole fraction scale to GAW partners around the world. The traceability of data from GAW stations to the WMO scale is evaluated at several World Calibration Centres (WCCs). JMA has been designated the WCC for CH4 in Asia and the regions of the southwest Pacific and, in collaboration with the NOAA CCL, propagates the WMO CH4 scale to the GAW network within its WCC jurisdiction. To do this, JMA established a CH4 calibration system in 2000 (Matsueda et al., 2004) that has been used for regional WCC-CH4 Round Robin (RR) comparison experiments (details available at https://ds.data.jma.go.jp/wcc/wcc.html). In addition, the system has been used to calibrate the CH4 working standard gases that are used for atmospheric CH4 measurements at three JMA/GAW stations (Wada et al., 2013), from a C-130 aircraft (Tsuboi et al., 2013; Niwa et al., 2014), and onboard JMA research vessels. Beginning in 2000, CH4 standard gas calibrations at JMA were made by using a gas chromatograph equipped with a flame ionization detector (GC/FID) (Matsueda et al., 2004; Tsuboi et al., 2016). However, over the past few years laserbased spectroscopic techniques such as wavelength-scanned cavity ring-down spectroscopy (Crosson, 2008) and cavityenhanced off-axis integrated cavity output spectroscopy (O’Shea et al., 2013) have become commercially available for measurement of atmospheric CH4. These techniques provide higher precision, improved stability, lower maintenance, and easier operation than the GC/FID method. In 2017, JMA replaced their GC/FID CH4 calibration system with a new laser-based spectroscopy system. To date, few comparisons of the laser-based spectroscopic and GC/FID techniques have been published (Tsuboi et al., 2013; Rella et al., 2013; Vardag et al., 2014; Flores et al., 2015; Zellweger et al., 2016). It is therefore important to evaluate the compatibility of past GC/FID CH4 calibrations with those of the new JMA/ WCC calibration system. In this paper, we examine the reliability of JMA’s new laser-based spectroscopy CH4 calibration system for use within the JMA/WCC RR comparison experiment program. First, we describe the new calibration method and the JMA primary standard gases. We then present the results of performance tests we ran on the new system to determine the repeatability and reproducibility, linearity, and traceability of calibrations to the WMO scale. Next, we investigate the consistency of calibration results from the GC/FID and new calibration systems. Finally, we validate the JMA CH4 calibrations on the basis of the results of the JMA/WCC RR comparison experiments. 2. Calibration method and standards 2.1 Previous and new calibration systems Two previous reports on the JMA GC/FID CH4 calibration system (Matsueda et al., 2004; Tsuboi et al., 2016) gave its measurement precision as ~1.2 nmol mol. Note that in this study, GC/FID calibration data with standard deviations greater than 2 nmol mol (n = 11) were excluded. In collaboration with the Meteorological Research Institute (MRI), JMA developed a new high-precision calibration system for the mole fractions of CH4 in standard gas samples for JMA/WCC RR comparison experiments and in reference gases for atmospheric measurements of JMA/GAW observations. The main component of the new calibration system is a laser-based spectroscopic instrument in a wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) analyzer (Picarro, Inc., CA, USA; model G2301) for CH4 and CO2 (Crosson, 2008), although CO2 output signals are not recorded during routine CH4 standard gas calibrations. Figure 1 shows a plumbing diagram of the new CH4 calibration system installed at JMA headquarters in Tokyo. It automatically measures CH4 mole fractions in 12 highpressure gas cylinders by using a commercially available control unit (CONTEC, Co., Osaka, Japan; model CPUCA20(FIT)GY) connected to a personal computer installed with custom-made software. For routine JMA calibrations, five primary standard gases in 48-L aluminum high-pressure cylinders are used to measure up to seven gas samples per analytical run. Before introducing the gas sample into the airflow line, a 2-way valve (Fijikin Inc. Japan; model FP91-6.35) connected to a gas vent line is opened to flush out any remaining gas in the pressure regulator attached to the high-pressure cylinder (Fig. 1). A stainless steel filter of 2 μm mesh size (Swagelok; model Evaluation of a new methane calibration system at JMA for WCC Round Robin experiments 2018 59 SS-2F-2) and a pressure sensor with a range from −100 to 300 kPa (Nagano Keiki Co., Ltd.; model ZT-60-A3N) are connected to the airflow line. The flow rate into the WS-CRDS analyzer cell is kept constant at 100 ± 2 ml min by a mass flow controller (Fijikin Inc. Japan; model FCST1005ML4J2-F200-AIR). To remove water vapor, a bypass airflow line equipped with a cold-trap unit cooled at −60°C by a Stirling cooler (Twinbird Co., Niigata, Japan; model SC-UE15R) is placed upstream of the mass flow controller. The bypass airflow line (not shown in Fig. 1) is not used for calibrations of standard gases with very low water vapor content (~ −80°C dew point). Sample pressure within the analyzer cell is maintained at precisely 18.7 kPa by an internal pressure controller, with cell temperature kept at 45°C. Sample flow into the analyzer is kept constant for 10 min to ensure stabilization of the analyzer responses. During the 10 min of sample flow, output signals from the analyzer are recorded at ~3 s intervals and the last 1 min of recorded data points are averaged to calculate the CH4 mole fraction. After each analysis, the airflow line up to the 2-way valve that precedes the mass flow controller is evacuated by a scroll vacuum pump (Edwards Ltd., UK; model nXDS 10i) for 110 s. To avoid drift of the analyzer signal associated with changes in flow rate and cell pressure (Tsuboi et al., 2013), a pre-prepared purge gas of similar CH4 mole fraction to that of the dry ambient air is flowed through the mass flow controller and analyzer during evacuation (Fig. 1). This continuous air-supply system by using purge gas is essential for high-precision analysis in the new CH4 calibration system. 2.2 Standard gases Because details of the two sets of primary standard gases and their CH4 mole fractions (Table 1) have been reported elsewhere (Matsueda et al., 2004; Tsuboi et al., 2016), only a brief description is given here. Both sets of primary standard gases were volumetrically prepared in 48-L aluminum high-pressure cylinders by JMA in cooperation with a Japanese gas company Japan Fine Products (JFP) (formerly Nippon Sanso Corporation, Japan). The CH4 mole fractions in the primary stan","PeriodicalId":39821,"journal":{"name":"Papers in Meteorology and Geophysics","volume":"67 1","pages":"57-67"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2467/MRIPAPERS.67.57","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Papers in Meteorology and Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2467/MRIPAPERS.67.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

A new calibration system of methane (CH4) standard gases by using a wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) analyzer was developed at the Japan Meteorological Agency (JMA) in collaboration with the Meteorological Research Institute. We used two sets of CH4 primary standard gases with mole fractions assigned based on the World Meteorological Organization (WMO) CH4 mole fraction scale maintained by the National Oceanic and Atmospheric Administration to test the performance of the new WS-CRDS calibration system. Our results showed high repeatability (0.06 nmol mol) and reproducibility (0.07 nmol mol) of measurements and good linearity against the WMO CH4 mole fraction scale. The CH4 calibration results for the new system agree well with those of the previous JMA calibration system, which employed a gas chromatograph with a flame ionization detector (GC/FID). These tests indicate that the new WS-CRDS CH4 calibration system at JMA will provide results that are consistent with those of the previous GC/FID system but with precision that is one order of magnitude higher. We also evaluated the stability and consistency of the JMA calibrations over the past 10 years by examining data from the World Calibration Centre (WCC) Round Robin comparison experiments in Asia and the regions in the southwest Pacific. The results of our study clearly demonstrate that the new calibration system will provide more precise CH4 measurements and improved traceability to the WMO scale of atmospheric CH4 measurements for the JMA/WCC comparisons. Corresponding address: Oceanography and Geochemistry Research Department, Meteorological Research Institute 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan. E-mail: hmatsued@mri-jma.go.jp © 2018 by the Japan Meteorological Agency / Meteorological Research Institute Matsueda, H. et al. Vol. 67 58 much as ~10 nmol mol; this value is considerably larger than the analytical precisions of ~1−2 nmol mol at individual laboratories (e.g., Matsueda et al., 2004; Dlugokencky et al., 2005; Tsuboi et al., 2017). Careful and regular calibration of measuring devices and comparison of calibration scales among laboratories are fundamental requirements for analyses of global observation data. The World Meteorological Organization (WMO) Global Atmosphere Watch (GAW) programme coordinates systematic observations and analyses of atmospheric CH4 and other trace gas species (http://www.wmo.int/gaw). Measurement data are posted by WMO/GAW participating laboratories and archived and distributed by the World Data Centre for Greenhouse Gases (WDCGG) at the Japan Meteorological Agency (JMA). The WMO/GAW programme strives to achieve compatibility among participating laboratories of ±2 nmol mol for measurements of CH4 in well-mixed background air (WMO, 2016); this precision is deemed sufficient for detection of global trends related to climate change. The WMO/ GAW requires datasets to be traceable to a common reference. The National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory has developed a gravimetric scale (NOAA04) that has been accepted as the WMO CH4 mole fraction scale (Dlugokencky et al., 2005). NOAA operates the Central Calibration Laboratory (CCL) for CH4, which maintains and distributes the WMO mole fraction scale to GAW partners around the world. The traceability of data from GAW stations to the WMO scale is evaluated at several World Calibration Centres (WCCs). JMA has been designated the WCC for CH4 in Asia and the regions of the southwest Pacific and, in collaboration with the NOAA CCL, propagates the WMO CH4 scale to the GAW network within its WCC jurisdiction. To do this, JMA established a CH4 calibration system in 2000 (Matsueda et al., 2004) that has been used for regional WCC-CH4 Round Robin (RR) comparison experiments (details available at https://ds.data.jma.go.jp/wcc/wcc.html). In addition, the system has been used to calibrate the CH4 working standard gases that are used for atmospheric CH4 measurements at three JMA/GAW stations (Wada et al., 2013), from a C-130 aircraft (Tsuboi et al., 2013; Niwa et al., 2014), and onboard JMA research vessels. Beginning in 2000, CH4 standard gas calibrations at JMA were made by using a gas chromatograph equipped with a flame ionization detector (GC/FID) (Matsueda et al., 2004; Tsuboi et al., 2016). However, over the past few years laserbased spectroscopic techniques such as wavelength-scanned cavity ring-down spectroscopy (Crosson, 2008) and cavityenhanced off-axis integrated cavity output spectroscopy (O’Shea et al., 2013) have become commercially available for measurement of atmospheric CH4. These techniques provide higher precision, improved stability, lower maintenance, and easier operation than the GC/FID method. In 2017, JMA replaced their GC/FID CH4 calibration system with a new laser-based spectroscopy system. To date, few comparisons of the laser-based spectroscopic and GC/FID techniques have been published (Tsuboi et al., 2013; Rella et al., 2013; Vardag et al., 2014; Flores et al., 2015; Zellweger et al., 2016). It is therefore important to evaluate the compatibility of past GC/FID CH4 calibrations with those of the new JMA/ WCC calibration system. In this paper, we examine the reliability of JMA’s new laser-based spectroscopy CH4 calibration system for use within the JMA/WCC RR comparison experiment program. First, we describe the new calibration method and the JMA primary standard gases. We then present the results of performance tests we ran on the new system to determine the repeatability and reproducibility, linearity, and traceability of calibrations to the WMO scale. Next, we investigate the consistency of calibration results from the GC/FID and new calibration systems. Finally, we validate the JMA CH4 calibrations on the basis of the results of the JMA/WCC RR comparison experiments. 2. Calibration method and standards 2.1 Previous and new calibration systems Two previous reports on the JMA GC/FID CH4 calibration system (Matsueda et al., 2004; Tsuboi et al., 2016) gave its measurement precision as ~1.2 nmol mol. Note that in this study, GC/FID calibration data with standard deviations greater than 2 nmol mol (n = 11) were excluded. In collaboration with the Meteorological Research Institute (MRI), JMA developed a new high-precision calibration system for the mole fractions of CH4 in standard gas samples for JMA/WCC RR comparison experiments and in reference gases for atmospheric measurements of JMA/GAW observations. The main component of the new calibration system is a laser-based spectroscopic instrument in a wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) analyzer (Picarro, Inc., CA, USA; model G2301) for CH4 and CO2 (Crosson, 2008), although CO2 output signals are not recorded during routine CH4 standard gas calibrations. Figure 1 shows a plumbing diagram of the new CH4 calibration system installed at JMA headquarters in Tokyo. It automatically measures CH4 mole fractions in 12 highpressure gas cylinders by using a commercially available control unit (CONTEC, Co., Osaka, Japan; model CPUCA20(FIT)GY) connected to a personal computer installed with custom-made software. For routine JMA calibrations, five primary standard gases in 48-L aluminum high-pressure cylinders are used to measure up to seven gas samples per analytical run. Before introducing the gas sample into the airflow line, a 2-way valve (Fijikin Inc. Japan; model FP91-6.35) connected to a gas vent line is opened to flush out any remaining gas in the pressure regulator attached to the high-pressure cylinder (Fig. 1). A stainless steel filter of 2 μm mesh size (Swagelok; model Evaluation of a new methane calibration system at JMA for WCC Round Robin experiments 2018 59 SS-2F-2) and a pressure sensor with a range from −100 to 300 kPa (Nagano Keiki Co., Ltd.; model ZT-60-A3N) are connected to the airflow line. The flow rate into the WS-CRDS analyzer cell is kept constant at 100 ± 2 ml min by a mass flow controller (Fijikin Inc. Japan; model FCST1005ML4J2-F200-AIR). To remove water vapor, a bypass airflow line equipped with a cold-trap unit cooled at −60°C by a Stirling cooler (Twinbird Co., Niigata, Japan; model SC-UE15R) is placed upstream of the mass flow controller. The bypass airflow line (not shown in Fig. 1) is not used for calibrations of standard gases with very low water vapor content (~ −80°C dew point). Sample pressure within the analyzer cell is maintained at precisely 18.7 kPa by an internal pressure controller, with cell temperature kept at 45°C. Sample flow into the analyzer is kept constant for 10 min to ensure stabilization of the analyzer responses. During the 10 min of sample flow, output signals from the analyzer are recorded at ~3 s intervals and the last 1 min of recorded data points are averaged to calculate the CH4 mole fraction. After each analysis, the airflow line up to the 2-way valve that precedes the mass flow controller is evacuated by a scroll vacuum pump (Edwards Ltd., UK; model nXDS 10i) for 110 s. To avoid drift of the analyzer signal associated with changes in flow rate and cell pressure (Tsuboi et al., 2013), a pre-prepared purge gas of similar CH4 mole fraction to that of the dry ambient air is flowed through the mass flow controller and analyzer during evacuation (Fig. 1). This continuous air-supply system by using purge gas is essential for high-precision analysis in the new CH4 calibration system. 2.2 Standard gases Because details of the two sets of primary standard gases and their CH4 mole fractions (Table 1) have been reported elsewhere (Matsueda et al., 2004; Tsuboi et al., 2016), only a brief description is given here. Both sets of primary standard gases were volumetrically prepared in 48-L aluminum high-pressure cylinders by JMA in cooperation with a Japanese gas company Japan Fine Products (JFP) (formerly Nippon Sanso Corporation, Japan). The CH4 mole fractions in the primary stan
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
JMA WCC循环实验甲烷标定系统的评价
日本气象厅(JMA)与日本气象研究所合作开发了一种利用波长扫描腔衰荡光谱(WS-CRDS)分析仪校准甲烷(CH4)标准气体的新系统。采用由美国国家海洋和大气管理局维护的世界气象组织(WMO) CH4摩尔分数标度分配的两组CH4一次标准气体,对WS-CRDS标定系统的性能进行了测试。结果表明,测量结果重复性高(0.06 nmol mol),重现性高(0.07 nmol mol),与WMO CH4摩尔分数有良好的线性关系。新系统的CH4定标结果与采用气相色谱仪和火焰电离检测器(GC/FID)的JMA定标系统的结果一致。这些测试表明,JMA的新WS-CRDS CH4校准系统将提供与以前的GC/FID系统一致的结果,但精度高出一个数量级。我们还通过检查世界校准中心(WCC)在亚洲和西南太平洋地区的循环比对实验数据,评估了过去10年JMA校准的稳定性和一致性。我们的研究结果清楚地表明,新的校准系统将提供更精确的CH4测量,并改善对WMO尺度大气CH4测量的可追溯性,用于JMA/WCC的比较。通讯地址:日本茨城市筑波永岭1-1气象研究所海洋地球化学研究部305-0052E-mail: hmatsued@mri-jma.go.jp©2018 by日本气象厅/ Matsueda, H.等。Vol. 67 - 58多为~10 nmol / mol;这个值比单个实验室的~1 - 2 nmol mol的分析精度要大得多(例如,Matsueda et al., 2004;dulgokencky et al., 2005;Tsuboi et al., 2017)。仔细和定期校准测量装置和比较实验室之间的校准尺度是分析全球观测数据的基本要求。世界气象组织(WMO)的全球大气监测(GAW)方案协调对大气CH4和其他微量气体物种的系统观测和分析(http://www.wmo.int/gaw)。测量数据由WMO/GAW参与实验室发布,并由日本气象厅(JMA)的世界温室气体数据中心存档和分发。WMO/GAW计划努力在参与实验室之间实现±2 nmol mol的兼容性,以测量混合良好的背景空气中的CH4 (WMO, 2016);这种精度被认为足以探测与气候变化有关的全球趋势。WMO/ GAW要求数据集可追溯到一个共同参考。美国国家海洋和大气管理局(NOAA)地球系统研究实验室开发了一种重量标度(NOAA04),已被公认为WMO CH4摩尔分数标度(dulgokencky et al., 2005)。NOAA管理着CH4的中央校准实验室(CCL),该实验室维护并向全球GAW合作伙伴分发WMO摩尔分数刻度。几个世界校准中心(wcc)评估了从全球大气监测站到WMO尺度的数据的可追溯性。JMA被指定为亚洲和西南太平洋地区CH4的WCC,并与NOAA CCL合作,将WMO CH4尺度传播到其WCC管辖范围内的GAW网络。为此,JMA于2000年建立了CH4校准系统(Matsueda et al., 2004),该系统已用于区域WCC-CH4 Round Robin (RR)比较实验(详细信息可在https://ds.data.jma.go.jp/wcc/wcc.html上获得)。此外,该系统还被用于校准来自C-130飞机(Tsuboi et al., 2013;Niwa等人,2014年),并在日本气象厅的研究船上。从2000年开始,JMA使用配备火焰电离检测器(GC/FID)的气相色谱仪进行CH4标准气体校准(Matsueda et al., 2004;Tsuboi et al., 2016)。然而,在过去的几年中,基于激光的光谱技术,如波长扫描腔衰荡光谱(Crosson, 2008)和腔增强离轴集成腔输出光谱(O’shea et al., 2013)已经商业化,可用于测量大气CH4。与GC/FID方法相比,这些技术具有更高的精度、更好的稳定性、更少的维护和更容易的操作。2017年,JMA用新的基于激光的光谱系统取代了他们的GC/FID CH4校准系统。 日本气象厅(JMA)与日本气象研究所合作开发了一种利用波长扫描腔衰荡光谱(WS-CRDS)分析仪校准甲烷(CH4)标准气体的新系统。采用由美国国家海洋和大气管理局维护的世界气象组织(WMO) CH4摩尔分数标度分配的两组CH4一次标准气体,对WS-CRDS标定系统的性能进行了测试。结果表明,测量结果重复性高(0.06 nmol mol),重现性高(0.07 nmol mol),与WMO CH4摩尔分数有良好的线性关系。新系统的CH4定标结果与采用气相色谱仪和火焰电离检测器(GC/FID)的JMA定标系统的结果一致。这些测试表明,JMA的新WS-CRDS CH4校准系统将提供与以前的GC/FID系统一致的结果,但精度高出一个数量级。我们还通过检查世界校准中心(WCC)在亚洲和西南太平洋地区的循环比对实验数据,评估了过去10年JMA校准的稳定性和一致性。我们的研究结果清楚地表明,新的校准系统将提供更精确的CH4测量,并改善对WMO尺度大气CH4测量的可追溯性,用于JMA/WCC的比较。通讯地址:日本茨城市筑波永岭1-1气象研究所海洋地球化学研究部305-0052E-mail: hmatsued@mri-jma.go.jp©2018 by日本气象厅/ Matsueda, H.等。Vol. 67 - 58多为~10 nmol / mol;这个值比单个实验室的~1 - 2 nmol mol的分析精度要大得多(例如,Matsueda et al., 2004;dulgokencky et al., 2005;Tsuboi et al., 2017)。仔细和定期校准测量装置和比较实验室之间的校准尺度是分析全球观测数据的基本要求。世界气象组织(WMO)的全球大气监测(GAW)方案协调对大气CH4和其他微量气体物种的系统观测和分析(http://www.wmo.int/gaw)。测量数据由WMO/GAW参与实验室发布,并由日本气象厅(JMA)的世界温室气体数据中心存档和分发。WMO/GAW计划努力在参与实验室之间实现±2 nmol mol的兼容性,以测量混合良好的背景空气中的CH4 (WMO, 2016);这种精度被认为足以探测与气候变化有关的全球趋势。WMO/ GAW要求数据集可追溯到一个共同参考。美国国家海洋和大气管理局(NOAA)地球系统研究实验室开发了一种重量标度(NOAA04),已被公认为WMO CH4摩尔分数标度(dulgokencky et al., 2005)。NOAA管理着CH4的中央校准实验室(CCL),该实验室维护并向全球GAW合作伙伴分发WMO摩尔分数刻度。几个世界校准中心(wcc)评估了从全球大气监测站到WMO尺度的数据的可追溯性。JMA被指定为亚洲和西南太平洋地区CH4的WCC,并与NOAA CCL合作,将WMO CH4尺度传播到其WCC管辖范围内的GAW网络。为此,JMA于2000年建立了CH4校准系统(Matsueda et al., 2004),该系统已用于区域WCC-CH4 Round Robin (RR)比较实验(详细信息可在https://ds.data.jma.go.jp/wcc/wcc.html上获得)。此外,该系统还被用于校准来自C-130飞机(Tsuboi et al., 2013;Niwa等人,2014年),并在日本气象厅的研究船上。从2000年开始,JMA使用配备火焰电离检测器(GC/FID)的气相色谱仪进行CH4标准气体校准(Matsueda et al., 2004;Tsuboi et al., 2016)。然而,在过去的几年中,基于激光的光谱技术,如波长扫描腔衰荡光谱(Crosson, 2008)和腔增强离轴集成腔输出光谱(O’shea et al., 2013)已经商业化,可用于测量大气CH4。与GC/FID方法相比,这些技术具有更高的精度、更好的稳定性、更少的维护和更容易的操作。2017年,JMA用新的基于激光的光谱系统取代了他们的GC/FID CH4校准系统。 迄今为止,很少有文献对激光光谱和GC/FID技术进行比较(Tsuboi et al., 2013;Rella et al., 2013;Vardag et al., 2014;Flores et al., 2015;Zellweger et al., 2016)。因此,评估过去的GC/FID CH4校准与新的JMA/ WCC校准系统的兼容性非常重要。在本文中,我们检验了JMA新的基于激光的光谱CH4校准系统在JMA/WCC RR比较实验项目中的可靠性。首先介绍了新的校准方法和JMA主要标准气体。然后,我们将介绍我们在新系统上运行的性能测试结果,以确定WMO刻度校准的可重复性和再现性、线性和可追溯性。接下来,我们研究了GC/FID和新的校准系统校准结果的一致性。最后,在JMA/WCC RR对比实验的基础上,验证了JMA CH4的标定结果。2. 之前的两篇关于JMA GC/FID CH4校准系统的报告(Matsueda et al., 2004;Tsuboi et al., 2016)给出的测量精度为~1.2 nmol mol。请注意,在本研究中,排除了标准偏差大于2 nmol mol (n = 11)的GC/FID校准数据。JMA与气象研究所(MRI)合作开发了一套新的高精度校准系统,用于JMA/WCC RR对比实验和JMA/GAW观测大气测量参考气体中CH4的摩尔分数。新校准系统的主要组成部分是波长扫描腔衰荡光谱(WS-CRDS)分析仪中的激光光谱仪器(Picarro, Inc., CA, USA;模型G2301)用于CH4和CO2 (Crosson, 2008),尽管在常规CH4标准气体校准期间不记录CO2输出信号。图1显示了安装在东京JMA总部的新CH4校准系统的管道图。它使用市售的控制单元(CONTEC, Co., Osaka, Japan;型号CPUCA20(FIT)GY)连接到安装了定制软件的个人电脑。对于常规的JMA校准,在48l铝高压钢瓶中使用五个主要标准气体来测量每次分析运行最多七个气体样品。在将气体样品引入气流管道之前,一个2路阀(Fijikin Inc.)。日本;(型号FP91-6.35)连接到排气管道,以冲洗连接在高压气缸上的压力调节器中的任何剩余气体(图1)。2 μm滤网尺寸的不锈钢过滤器(Swagelok;JMA用于WCC Round Robin实验的新型甲烷校准系统2018 (59 SS-2F-2)和范围为- 100至300 kPa的压力传感器的模型评估(Nagano Keiki Co., Ltd;型号ZT-60-A3N)连接到气流管路。通过质量流量控制器(Fijikin Inc.)将进入WS-CRDS分析池的流量保持在100±2ml min。日本;模型FCST1005ML4J2-F200-AIR)。为了去除水蒸气,旁路气流管道配备了冷阱装置,由斯特林冷却器(Twinbird Co., Niigata, Japan;型号SC-UE15R)放置在质量流量控制器的上游。旁路气流线(图1中未显示)不用于校准水汽含量极低(~−80℃露点)的标准气体。内部压力控制器将分析单元内的样品压力精确地保持在18.7 kPa,单元温度保持在45°C。进入分析仪的样品流量保持恒定10分钟,以确保分析仪响应的稳定。在样品流动的10分钟内,每隔3秒记录一次分析仪的输出信号,对最后1分钟记录的数据点取平均值,计算CH4摩尔分数。每次分析后,气流流向质量流量控制器之前的两通阀,由涡旋真空泵(爱德华兹有限公司,英国;型号nXDS 10i)为110秒。为了避免因流速和细胞压力变化引起的分析仪信号漂移(Tsuboi et al., 2013),在疏散过程中,预先准备的与干燥环境空气相似的CH4摩尔分数的吹扫气体流经质量流量控制器和分析仪(图1)。这种使用吹扫气体的连续供气系统对于在新的CH4校准系统中进行高精度分析至关重要。2.2标准气体由于两组主要标准气体及其CH4摩尔分数(表1)的详细信息已在其他地方报道(Matsueda et al., 2004;Tsuboi et al., 2016),这里只给出一个简短的描述。 迄今为止,很少有文献对激光光谱和GC/FID技术进行比较(Tsuboi et al., 2013;Rella et al., 2013;Vardag et al., 2014;Flores et al., 2015;Zellweger et al., 2016)。因此,评估过去的GC/FID CH4校准与新的JMA/ WCC校准系统的兼容性非常重要。在本文中,我们检验了JMA新的基于激光的光谱CH4校准系统在JMA/WCC RR比较实验项目中的可靠性。首先介绍了新的校准方法和JMA主要标准气体。然后,我们将介绍我们在新系统上运行的性能测试结果,以确定WMO刻度校准的可重复性和再现性、线性和可追溯性。接下来,我们研究了GC/FID和新的校准系统校准结果的一致性。最后,在JMA/WCC RR对比实验的基础上,验证了JMA CH4的标定结果。2. 之前的两篇关于JMA GC/FID CH4校准系统的报告(Matsueda et al., 2004;Tsuboi et al., 2016)给出的测量精度为~1.2 nmol mol。请注意,在本研究中,排除了标准偏差大于2 nmol mol (n = 11)的GC/FID校准数据。JMA与气象研究所(MRI)合作开发了一套新的高精度校准系统,用于JMA/WCC RR对比实验和JMA/GAW观测大气测量参考气体中CH4的摩尔分数。新校准系统的主要组成部分是波长扫描腔衰荡光谱(WS-CRDS)分析仪中的激光光谱仪器(Picarro, Inc., CA, USA;模型G2301)用于CH4和CO2 (Crosson, 2008),尽管在常规CH4标准气体校准期间不记录CO2输出信号。图1显示了安装在东京JMA总部的新CH4校准系统的管道图。它使用市售的控制单元(CONTEC, Co., Osaka, Japan;型号CPUCA20(FIT)GY)连接到安装了定制软件的个人电脑。对于常规的JMA校准,在48l铝高压钢瓶中使用五个主要标准气体来测量每次分析运行最多七个气体样品。在将气体样品引入气流管道之前,一个2路阀(Fijikin Inc.)。日本;(型号FP91-6.35)连接到排气管道,以冲洗连接在高压气缸上的压力调节器中的任何剩余气体(图1)。2 μm滤网尺寸的不锈钢过滤器(Swagelok;JMA用于WCC Round Robin实验的新型甲烷校准系统2018 (59 SS-2F-2)和范围为- 100至300 kPa的压力传感器的模型评估(Nagano Keiki Co., Ltd;型号ZT-60-A3N)连接到气流管路。通过质量流量控制器(Fijikin Inc.)将进入WS-CRDS分析池的流量保持在100±2ml min。日本;模型FCST1005ML4J2-F200-AIR)。为了去除水蒸气,旁路气流管道配备了冷阱装置,由斯特林冷却器(Twinbird Co., Niigata, Japan;型号SC-UE15R)放置在质量流量控制器的上游。旁路气流线(图1中未显示)不用于校准水汽含量极低(~−80℃露点)的标准气体。内部压力控制器将分析单元内的样品压力精确地保持在18.7 kPa,单元温度保持在45°C。进入分析仪的样品流量保持恒定10分钟,以确保分析仪响应的稳定。在样品流动的10分钟内,每隔3秒记录一次分析仪的输出信号,对最后1分钟记录的数据点取平均值,计算CH4摩尔分数。每次分析后,气流流向质量流量控制器之前的两通阀,由涡旋真空泵(爱德华兹有限公司,英国;型号nXDS 10i)为110秒。为了避免因流速和细胞压力变化引起的分析仪信号漂移(Tsuboi et al., 2013),在疏散过程中,预先准备的与干燥环境空气相似的CH4摩尔分数的吹扫气体流经质量流量控制器和分析仪(图1)。这种使用吹扫气体的连续供气系统对于在新的CH4校准系统中进行高精度分析至关重要。2.2标准气体由于两组主要标准气体及其CH4摩尔分数(表1)的详细信息已在其他地方报道(Matsueda et al., 2004;Tsuboi et al., 2016),这里只给出一个简短的描述。 两套初级标准气体都是由JMA与日本燃气公司日本精细产品公司(JFP)(原日本煤气公司)合作,在48l铝高压钢瓶中进行体积制备的。原生stan中CH4的摩尔分数 两套初级标准气体都是由JMA与日本燃气公司日本精细产品公司(JFP)(原日本煤气公司)合作,在48l铝高压钢瓶中进行体积制备的。原生stan中CH4的摩尔分数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Papers in Meteorology and Geophysics
Papers in Meteorology and Geophysics Earth and Planetary Sciences-Geophysics
自引率
0.00%
发文量
1
期刊最新文献
Estimation of JMA-Magnitude for Slow Tsunami Earthquakes Application of an Objective Detection Method of Long-Term Slow Slip Events using GNSS Data: Detection of Short-Term Slow Slip Events and Estimation of Moment Magnitude of Long-Term Slow Slip Events Deepening and Evolution of a Low over the Sea of Japan in Late August in 2016: Interaction of Midlatitude Flows and Typhoon Lionrock (1610) An improved equation for estimating diurnal atmospheric radiation near the surface in Japan Tropical cyclone forecasts for the Western North Pacific with high-resolution atmosphere and coupled atmosphere-ocean models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1