Complementary Meta-Analytic Methods for the Quantitative Review of Research: 1. A Theoretical Overview

A. Figueredo, Candace J Black, A. Scott
{"title":"Complementary Meta-Analytic Methods for the Quantitative Review of Research: 1. A Theoretical Overview","authors":"A. Figueredo, Candace J Black, A. Scott","doi":"10.2458/JMM.V4I2.17935","DOIUrl":null,"url":null,"abstract":"Contents Meta-Analysis is a procedure designed to quantitatively analyze the methodological characteristics in studies sampled in conventional meta-analyses to assess the relationship between methodologies and outcomes. This article presents the rationale and procedures for conducting a Contents Meta-Analysis in conjunction with conventional Effects Meta-analysis. We provide an overview of the pertinent limitations of conventional meta-analysis from methodological and meta-scientific standpoint. We then introduce novel terminology distinguishing different kinds of complementary meta-analyses that address many of the problems previously identified for conventional meta-analyses. We would also like to direct readers to the second paper in this series (Figueredo, Black, & Scott, this issue), which demonstrates the utility of Contents Meta-Analysis with an empirical example and present findings regarding the generalizability of the effect sizes estimated. DOI:10.2458/azu_jmmss_v4i2_figueredo2","PeriodicalId":90602,"journal":{"name":"Journal of methods and measurement in the social sciences","volume":"4 1","pages":"21-45"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of methods and measurement in the social sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2458/JMM.V4I2.17935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Contents Meta-Analysis is a procedure designed to quantitatively analyze the methodological characteristics in studies sampled in conventional meta-analyses to assess the relationship between methodologies and outcomes. This article presents the rationale and procedures for conducting a Contents Meta-Analysis in conjunction with conventional Effects Meta-analysis. We provide an overview of the pertinent limitations of conventional meta-analysis from methodological and meta-scientific standpoint. We then introduce novel terminology distinguishing different kinds of complementary meta-analyses that address many of the problems previously identified for conventional meta-analyses. We would also like to direct readers to the second paper in this series (Figueredo, Black, & Scott, this issue), which demonstrates the utility of Contents Meta-Analysis with an empirical example and present findings regarding the generalizability of the effect sizes estimated. DOI:10.2458/azu_jmmss_v4i2_figueredo2
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究定量评价的补充性元分析方法:理论概述
荟萃分析是一种旨在定量分析传统荟萃分析中抽样研究的方法学特征的程序,以评估方法学与结果之间的关系。本文介绍了进行内容荟萃分析和常规效果荟萃分析的基本原理和程序。我们从方法论和元科学的角度概述了传统元分析的相关局限性。然后,我们引入新的术语来区分不同类型的互补荟萃分析,这些分析解决了以前为传统荟萃分析确定的许多问题。我们还想引导读者阅读本系列的第二篇论文(Figueredo, Black, & Scott,本期),该论文通过一个实证例子展示了内容元分析的实用性,并提出了关于估计效应大小的普遍性的发现。DOI: 10.2458 / azu_jmmss_v4i2_figueredo2
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
26 weeks
期刊最新文献
Invitation for COVID-19 Submissions Machine Learning Method for High-Dimensional Education Data Comparing human coding to two natural language processing algorithms in aspirations of people affected by Duchenne Muscular Dystrophy The Modern Biased Information Test: Proposing alternatives for implicit measures Binary Classification: An Introductory Machine Learning Tutorial for Social Scientists
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1