Problems in Using Diagnosis in Child and Adolescent Mental Health Services Research

L. Bickman, L. G. Wighton, E. W. Lambert, M. Karver, L. H. Steding
{"title":"Problems in Using Diagnosis in Child and Adolescent Mental Health Services Research","authors":"L. Bickman, L. G. Wighton, E. W. Lambert, M. Karver, L. H. Steding","doi":"10.2458/V3I1.16110","DOIUrl":null,"url":null,"abstract":"This paper presents results from a three-part study on diagnosis of children with affective and behavior disorders. We examined the reliability, discriminant, and predictive validity of common diagnoses used in mental health services research using a research diagnostic interview. Results suggest four problems: a) some diagnoses demonstrate internal consistency only slightly better than symptoms chosen at random; b) diagnosis did not add appreciably to a brief global functioning screen in predicting service use; c) low inter-rater reliability among informants and clinicians for six of the most common diagnoses; and d) clinician diagnoses differed between sites in ways that reflect different reimbursement strategies. The study concludes that clinicians and researchers should not assume diagnosis is a useful measure of child and adolescent problems and outcomes until there is more evidence supporting the validity of diagnosis. DOI:10.2458/azu_jmmss_v3i1_bickman","PeriodicalId":90602,"journal":{"name":"Journal of methods and measurement in the social sciences","volume":"3 1","pages":"1-26"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of methods and measurement in the social sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2458/V3I1.16110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper presents results from a three-part study on diagnosis of children with affective and behavior disorders. We examined the reliability, discriminant, and predictive validity of common diagnoses used in mental health services research using a research diagnostic interview. Results suggest four problems: a) some diagnoses demonstrate internal consistency only slightly better than symptoms chosen at random; b) diagnosis did not add appreciably to a brief global functioning screen in predicting service use; c) low inter-rater reliability among informants and clinicians for six of the most common diagnoses; and d) clinician diagnoses differed between sites in ways that reflect different reimbursement strategies. The study concludes that clinicians and researchers should not assume diagnosis is a useful measure of child and adolescent problems and outcomes until there is more evidence supporting the validity of diagnosis. DOI:10.2458/azu_jmmss_v3i1_bickman
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
儿童青少年心理健康服务中诊断应用的问题研究
本文介绍了一项关于情感和行为障碍儿童诊断的三部分研究的结果。我们使用研究诊断访谈来检验心理健康服务研究中常用诊断的信度、判别性和预测效度。结果显示了四个问题:a)一些诊断的内部一致性仅略好于随机选择的症状;B)诊断在预测服务使用方面没有明显地增加简短的全球功能筛查;C)在六种最常见的诊断中,举报人和临床医生之间的可信度较低;d)不同地点的临床医生诊断的不同反映了不同的报销策略。该研究的结论是,在有更多证据支持诊断的有效性之前,临床医生和研究人员不应该假设诊断是儿童和青少年问题和结果的有用衡量标准。DOI: 10.2458 / azu_jmmss_v3i1_bickman
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
26 weeks
期刊最新文献
Invitation for COVID-19 Submissions Machine Learning Method for High-Dimensional Education Data Comparing human coding to two natural language processing algorithms in aspirations of people affected by Duchenne Muscular Dystrophy The Modern Biased Information Test: Proposing alternatives for implicit measures Binary Classification: An Introductory Machine Learning Tutorial for Social Scientists
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1