No matter Where You Go, There You Are: The Genetic Foundations of Temporal Stability

A. Figueredo, T. C. Baca, Candace J Black
{"title":"No matter Where You Go, There You Are: The Genetic Foundations of Temporal Stability","authors":"A. Figueredo, T. C. Baca, Candace J Black","doi":"10.2458/V5I2.18477","DOIUrl":null,"url":null,"abstract":"We present empirical tests of the stability of individual differences over the lifespan using a novel methodological technique to combine behavior-genetic data from twin dyads with longitudinal measures of life history-related traits (including health and personality) from non-twin samples.  Using data from The Midlife in the United States (MIDUS) Longitudinal Survey, we constructed a series of “hybrid” models that permitted the estimation of both temporal stability parameters and behavior-genetic variance components to determine the contributions of genetic and environmental influences on individual differences.  Our results indicate that changes in a higher-order factor of life history strategy (Super-K, composed of the K-Factor, Covitality, and Personality) over the study period were very small in magnitude and that this temporal stability is under a considerable degree of shared genetic influence and a substantial degree of non-shared environmental influence, but a statistically non-significant degree of shared environmental influence.  Implications and future directions are discussed.  DOI:10.2458/azu_jmmss_v5i1_figueredo","PeriodicalId":90602,"journal":{"name":"Journal of methods and measurement in the social sciences","volume":"15 1","pages":"76-106"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of methods and measurement in the social sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2458/V5I2.18477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We present empirical tests of the stability of individual differences over the lifespan using a novel methodological technique to combine behavior-genetic data from twin dyads with longitudinal measures of life history-related traits (including health and personality) from non-twin samples.  Using data from The Midlife in the United States (MIDUS) Longitudinal Survey, we constructed a series of “hybrid” models that permitted the estimation of both temporal stability parameters and behavior-genetic variance components to determine the contributions of genetic and environmental influences on individual differences.  Our results indicate that changes in a higher-order factor of life history strategy (Super-K, composed of the K-Factor, Covitality, and Personality) over the study period were very small in magnitude and that this temporal stability is under a considerable degree of shared genetic influence and a substantial degree of non-shared environmental influence, but a statistically non-significant degree of shared environmental influence.  Implications and future directions are discussed.  DOI:10.2458/azu_jmmss_v5i1_figueredo
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无论你去哪里,你在哪里:时间稳定的遗传基础
我们采用一种新颖的方法技术,将来自双胞胎双体的行为遗传数据与来自非双胞胎样本的生活史相关特征(包括健康和个性)的纵向测量相结合,对个体差异在整个生命周期中的稳定性进行实证检验。利用美国中年纵向调查(MIDUS)的数据,我们构建了一系列“混合”模型,该模型允许估计时间稳定性参数和行为遗传方差成分,以确定遗传和环境对个体差异的影响。我们的研究结果表明,在研究期间,生活史策略的高阶因子(Super-K,由k因子、共生力和人格组成)的变化幅度非常小,这种时间稳定性受到相当程度的共同遗传影响和相当程度的非共同环境影响,但共同环境影响的统计程度不显著。讨论了影响和未来的发展方向。DOI: 10.2458 / azu_jmmss_v5i1_figueredo
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
26 weeks
期刊最新文献
Invitation for COVID-19 Submissions Machine Learning Method for High-Dimensional Education Data Comparing human coding to two natural language processing algorithms in aspirations of people affected by Duchenne Muscular Dystrophy The Modern Biased Information Test: Proposing alternatives for implicit measures Binary Classification: An Introductory Machine Learning Tutorial for Social Scientists
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1