Early Detection of External Neurological Symptoms through a Wearable Smart-Glasses Prototype

IF 0.6 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Communications Software and Systems Pub Date : 2021-01-01 DOI:10.24138/JCOMSS-2021-0071
A. Sciarrone, I. Bisio, Chiara Garibotto, F. Lavagetto, Mehrnaz Hamedani, V. Prada, A. Schenone, Federico Boero, Gianluca Gambari, M. Cereia, Michele Jurilli
{"title":"Early Detection of External Neurological Symptoms through a Wearable Smart-Glasses Prototype","authors":"A. Sciarrone, I. Bisio, Chiara Garibotto, F. Lavagetto, Mehrnaz Hamedani, V. Prada, A. Schenone, Federico Boero, Gianluca Gambari, M. Cereia, Michele Jurilli","doi":"10.24138/JCOMSS-2021-0071","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) framework is moving the research community to provide smart systems and solutions aimed at revolutionizing medical sciences and healthcare. Given the extreme diffusion of Alzheimer’s disease (AD) and Parkinson’s disease (PD), the demand for a solution to early detect neurological symptoms of such diseases strongly arose. According to the medical literature, such early detection can be obtained through the correlation between PD and AD and some external symptoms: the Essential Tremor (ET) and the number of Eye Blinks (EBs). In this paper, which can be considered as an extended version of [1], we present a prototype of wearable smart glasses able to detect the presence of ET of the head and to count the number of EBs at the same time, in a transparent way with respect to the final user. Numerical results demonstrate the reliability of the proposed approach: the proposed algorithms are able to i) correctly recognize the ET with an overall accuracy above 97% and ii) count the number of EBs with an overall error around 9%.","PeriodicalId":38910,"journal":{"name":"Journal of Communications Software and Systems","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications Software and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24138/JCOMSS-2021-0071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3

Abstract

The Internet of Things (IoT) framework is moving the research community to provide smart systems and solutions aimed at revolutionizing medical sciences and healthcare. Given the extreme diffusion of Alzheimer’s disease (AD) and Parkinson’s disease (PD), the demand for a solution to early detect neurological symptoms of such diseases strongly arose. According to the medical literature, such early detection can be obtained through the correlation between PD and AD and some external symptoms: the Essential Tremor (ET) and the number of Eye Blinks (EBs). In this paper, which can be considered as an extended version of [1], we present a prototype of wearable smart glasses able to detect the presence of ET of the head and to count the number of EBs at the same time, in a transparent way with respect to the final user. Numerical results demonstrate the reliability of the proposed approach: the proposed algorithms are able to i) correctly recognize the ET with an overall accuracy above 97% and ii) count the number of EBs with an overall error around 9%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过可穿戴智能眼镜原型早期检测外部神经症状
物联网(IoT)框架正在推动研究界提供旨在彻底改变医学科学和医疗保健的智能系统和解决方案。鉴于阿尔茨海默病(AD)和帕金森病(PD)的极端扩散,对早期检测这类疾病神经症状的解决方案的需求强烈上升。根据医学文献,通过PD和AD与一些外部症状的相关性,如特发性震颤(ET)和眨眼次数(EBs),可以获得这种早期发现。本文可以看作是[1]的扩展版本,我们提出了一种可穿戴智能眼镜的原型,能够检测头部ET的存在,同时以透明的方式对最终用户计算EBs的数量。数值结果证明了该方法的可靠性:所提出的算法能够i)正确识别ET,总体精度在97%以上;ii)计算EBs的数量,总体误差在9%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Communications Software and Systems
Journal of Communications Software and Systems Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
14.30%
发文量
28
审稿时长
8 weeks
期刊最新文献
Assessment of Transmitted Power Density in the Planar Multilayer Tissue Model due to Radiation from Dipole Antenna Signature-based Tree for Finding Frequent Itemsets Friendy: A Deep Learning based Framework for Assisting in Young Autistic Children Psychotherapy Interventions Ensemble of Local Texture Descriptor for Accurate Breast Cancer Detection from Histopathologic Images Comparison of Similarity Measures for Trajectory Clustering - Aviation Use Case
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1