Data Analysis of the Web News Headlines based on Natural Language Processing

IF 0.6 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Communications Software and Systems Pub Date : 2023-01-01 DOI:10.24138/jcomss-2023-0047
Hrvoje Karna, Maja Braović, L. Vicković, D. Krstinić
{"title":"Data Analysis of the Web News Headlines based on Natural Language Processing","authors":"Hrvoje Karna, Maja Braović, L. Vicković, D. Krstinić","doi":"10.24138/jcomss-2023-0047","DOIUrl":null,"url":null,"abstract":"— This paper explores the problem of media content data analysis with the focus on the phenomenon of vaccination, closely related to the COVID-19 pandemic. The presented research is an extension of the previous work, but it differs in two main areas. Firstly, the text corpus submitted to the analysis has been considerably increased. Secondly, the previous data analysis was performed on the body part of the posts, while now it is focused on the most prominent part of the news posts, their headlines. This change from body to headline analysis was provoked by significant differences in their characteristics and the fact that most people read only headlines. Described data acquisition uses an advanced content collection approach followed by the modeling process, during which a set of natural language processing algorithms were applied. To enable the comparison, the model uses the same set of algorithms in the modeling phase like in previous work. The main contributions of the work are manifested in: i) approaching the problem from a new perspective, ii) applying more efficient method of data collection, and crucially iii) enabling the comparison of analysis results for individual parts of the content, which ensured a comprehensive insight into the characteristics of news posts.","PeriodicalId":38910,"journal":{"name":"Journal of Communications Software and Systems","volume":"4 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications Software and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24138/jcomss-2023-0047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

— This paper explores the problem of media content data analysis with the focus on the phenomenon of vaccination, closely related to the COVID-19 pandemic. The presented research is an extension of the previous work, but it differs in two main areas. Firstly, the text corpus submitted to the analysis has been considerably increased. Secondly, the previous data analysis was performed on the body part of the posts, while now it is focused on the most prominent part of the news posts, their headlines. This change from body to headline analysis was provoked by significant differences in their characteristics and the fact that most people read only headlines. Described data acquisition uses an advanced content collection approach followed by the modeling process, during which a set of natural language processing algorithms were applied. To enable the comparison, the model uses the same set of algorithms in the modeling phase like in previous work. The main contributions of the work are manifested in: i) approaching the problem from a new perspective, ii) applying more efficient method of data collection, and crucially iii) enabling the comparison of analysis results for individual parts of the content, which ensured a comprehensive insight into the characteristics of news posts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自然语言处理的网络新闻标题数据分析
-以与新冠肺炎疫情密切相关的疫苗接种现象为重点,探讨媒体内容数据分析问题。本研究是前人研究的延伸,但在两个主要方面有所不同。首先,提交分析的文本语料库已大大增加。其次,之前的数据分析是针对帖子的主体部分进行的,而现在的数据分析是针对新闻帖子中最突出的部分——标题进行的。这种从正文分析到标题分析的变化是由于他们的特征存在显著差异,而且大多数人只阅读标题。所描述的数据采集使用高级内容收集方法,随后进行建模过程,在此过程中应用了一组自然语言处理算法。为了进行比较,模型在建模阶段使用与前面工作中相同的一组算法。本工作的主要贡献体现在:1)从新的角度看待问题;2)采用了更有效的数据收集方法;3)实现了对内容各个部分分析结果的比较,确保了对新闻帖子特征的全面洞察。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Communications Software and Systems
Journal of Communications Software and Systems Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
14.30%
发文量
28
审稿时长
8 weeks
期刊最新文献
Assessment of Transmitted Power Density in the Planar Multilayer Tissue Model due to Radiation from Dipole Antenna Signature-based Tree for Finding Frequent Itemsets Friendy: A Deep Learning based Framework for Assisting in Young Autistic Children Psychotherapy Interventions Ensemble of Local Texture Descriptor for Accurate Breast Cancer Detection from Histopathologic Images Comparison of Similarity Measures for Trajectory Clustering - Aviation Use Case
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1