{"title":"Frequency Synchronization in Frequency Domain OFDM-IM based WLAN Systems","authors":"Lalitha H, Navin Kumar","doi":"10.24138/jcomss-2023-0052","DOIUrl":null,"url":null,"abstract":"— The next-generation of wireless local area network systems are being conceptualized with new applications, smart devices and use cases which mandate unprecedented levels of high data rates, spectral efficiency, reliability, low latency and high energy efficiency. The index modulated orthogonal frequency division multiplexing (OFDM-IM) stands out as the most endearing candidate for physical layer modulation technique which provides a smooth transit to green communications. However, OFDM-IM being a multicarrier technique similar to classical OFDM is also very sensitive to frequency synchronization errors and needs to be addressed on priority. In this article, a novel algorithm is proposed which estimates and corrects the carrier frequency offset at the receiver and the algorithm’s performance is compared with two frequency domain variants of OFDM-IM and the classical OFDM under the same channel conditions and the simulation results show that our algorithm is not only capable of meeting the standard requirement of ±20ppm but can handle higher offsets till ±30ppm.","PeriodicalId":38910,"journal":{"name":"Journal of Communications Software and Systems","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications Software and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24138/jcomss-2023-0052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
— The next-generation of wireless local area network systems are being conceptualized with new applications, smart devices and use cases which mandate unprecedented levels of high data rates, spectral efficiency, reliability, low latency and high energy efficiency. The index modulated orthogonal frequency division multiplexing (OFDM-IM) stands out as the most endearing candidate for physical layer modulation technique which provides a smooth transit to green communications. However, OFDM-IM being a multicarrier technique similar to classical OFDM is also very sensitive to frequency synchronization errors and needs to be addressed on priority. In this article, a novel algorithm is proposed which estimates and corrects the carrier frequency offset at the receiver and the algorithm’s performance is compared with two frequency domain variants of OFDM-IM and the classical OFDM under the same channel conditions and the simulation results show that our algorithm is not only capable of meeting the standard requirement of ±20ppm but can handle higher offsets till ±30ppm.