Bayesian Inference for SIR Epidemic Model with dependent parameters

Abdelaziz Qaffou, H. Maroufy, Mokhtar Zbair
{"title":"Bayesian Inference for SIR Epidemic Model with dependent parameters","authors":"Abdelaziz Qaffou, H. Maroufy, Mokhtar Zbair","doi":"10.2478/mjpaa-2022-0017","DOIUrl":null,"url":null,"abstract":"Abstract This paper is concerned with the Bayesian inference for the dependent parameters of stochastic SIR epidemic model in a closed population. The estimation framework involves the introduction of m − 1 latent data between every pair of observations. Kibble’s bivariate gamma distribution is considered as a good candidate prior density of parameters, they give an appropriate frame to model the dependence between the parameters. A Markov chain Monte Carlo methods are then used to sample the posterior distribution of the model parameters. Simulated datasets are used to illustrate the proposed methodology.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"8 1","pages":"244 - 255"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2022-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper is concerned with the Bayesian inference for the dependent parameters of stochastic SIR epidemic model in a closed population. The estimation framework involves the introduction of m − 1 latent data between every pair of observations. Kibble’s bivariate gamma distribution is considered as a good candidate prior density of parameters, they give an appropriate frame to model the dependence between the parameters. A Markov chain Monte Carlo methods are then used to sample the posterior distribution of the model parameters. Simulated datasets are used to illustrate the proposed methodology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有相关参数的SIR流行病模型的贝叶斯推断
摘要本文研究了封闭种群中随机SIR流行病模型相关参数的贝叶斯推断。估计框架涉及在每对观测值之间引入m−1个潜在数据。Kibble的二元伽马分布被认为是一个很好的候选参数先验密度,它给出了一个合适的框架来模拟参数之间的依赖关系。然后用马尔可夫链蒙特卡罗方法对模型参数的后验分布进行抽样。模拟数据集用于说明所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Moroccan Journal of Pure and Applied Analysis
Moroccan Journal of Pure and Applied Analysis Mathematics-Numerical Analysis
CiteScore
1.60
自引率
0.00%
发文量
27
审稿时长
8 weeks
期刊最新文献
Volterra operator norms : a brief survey Negative Powers of Contractions Having a Strong AA+ Spectrum Sums and products of periodic functions The Maximum Locus of the Bloch Norm Mohamed Zarrabi 1964-2021
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1