Rika Nishikiori, Y. Makino, Yukino Ochi, Noriyuki Yamashita, Kousuke Okamoto, N. Kawashita, J. Takahara, T. Yasunaga, T. Takagi, M. Kawase
{"title":"Development of Fingerprint Verification Type Self-Organized Map Applied to Profiling Seized Methamphetamine","authors":"Rika Nishikiori, Y. Makino, Yukino Ochi, Noriyuki Yamashita, Kousuke Okamoto, N. Kawashita, J. Takahara, T. Yasunaga, T. Takagi, M. Kawase","doi":"10.2751/JCAC.9.30","DOIUrl":null,"url":null,"abstract":"In a previous study {Takagi, T. et al., Chem. Pharm. Bull., 52(12), 1427-1432 (2004)}, we applied a slightly revised neural Independent Component Analysis (ICA) for profiling illegally distributed methamphetamine. Using ICA and an hourglass type Hierarchical Neural Network (HNN), we obtained better classification results than by using Principal Component Analysis (PCA), CATegorical PCA (CATPCA) and the MultiDimensional Scaling method (MDS). The HNN is a nonlinear machine learning method, and the ICA applied in that study exhibited nonlinear characteristics. The results indicated that nonlinear analysis is more efficient than linear analysis for profiling confiscated methamphetamine. Consequently, in this study, we applied Self-Organizing Maps (SOMs) to impurity profiling of methamphetamine. While SOM is currently a frequently employed nonlinear classification method, the ordinary SOM uses only that information contained by the winner neuron for classification and the information of other grid points is neglected. We therefore attempted to simultaneously utilize the information of loser neurons in order to avoid information loss. First, we visualized the resultant reference vectors using a contour map of each sample. Although considerable information can be visually compared using the SOM contour maps, metric comparisons are difficult. We therefore used MDS to construct a similarity matrix using the data of the resultant reference vectors to visualize metric data. To assess the results, we assumed that there are four synthetic routes (Nagai, Leuckart, Emde and reductive amination methods), and that each of these can be identified by comparing route-specific impurities.","PeriodicalId":41457,"journal":{"name":"Journal of Computer Aided Chemistry","volume":"9 1","pages":"30-36"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Aided Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2751/JCAC.9.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In a previous study {Takagi, T. et al., Chem. Pharm. Bull., 52(12), 1427-1432 (2004)}, we applied a slightly revised neural Independent Component Analysis (ICA) for profiling illegally distributed methamphetamine. Using ICA and an hourglass type Hierarchical Neural Network (HNN), we obtained better classification results than by using Principal Component Analysis (PCA), CATegorical PCA (CATPCA) and the MultiDimensional Scaling method (MDS). The HNN is a nonlinear machine learning method, and the ICA applied in that study exhibited nonlinear characteristics. The results indicated that nonlinear analysis is more efficient than linear analysis for profiling confiscated methamphetamine. Consequently, in this study, we applied Self-Organizing Maps (SOMs) to impurity profiling of methamphetamine. While SOM is currently a frequently employed nonlinear classification method, the ordinary SOM uses only that information contained by the winner neuron for classification and the information of other grid points is neglected. We therefore attempted to simultaneously utilize the information of loser neurons in order to avoid information loss. First, we visualized the resultant reference vectors using a contour map of each sample. Although considerable information can be visually compared using the SOM contour maps, metric comparisons are difficult. We therefore used MDS to construct a similarity matrix using the data of the resultant reference vectors to visualize metric data. To assess the results, we assumed that there are four synthetic routes (Nagai, Leuckart, Emde and reductive amination methods), and that each of these can be identified by comparing route-specific impurities.
在之前的一项研究中{Takagi, T. et al., Chem。制药。公牛。, 52(12), 1427-1432(2004)},我们应用稍微改进的神经独立成分分析(ICA)来分析非法分销的甲基苯丙胺。采用ICA和沙漏型层次神经网络(HNN)进行分类,得到了比主成分分析(PCA)、分类主成分分析(CATPCA)和多维尺度方法(MDS)更好的分类结果。HNN是一种非线性机器学习方法,该研究中应用的ICA具有非线性特征。结果表明,非线性分析比线性分析更有效。因此,在本研究中,我们将自组织图谱(SOMs)应用于甲基苯丙胺的杂质分析。SOM是目前常用的一种非线性分类方法,但普通的SOM只使用赢家神经元所包含的信息进行分类,而忽略了其他网格点的信息。因此,我们试图同时利用失败神经元的信息,以避免信息丢失。首先,我们使用每个样本的等高线图来可视化生成的参考向量。虽然可以使用SOM等高线地图直观地比较大量信息,但度量比较是困难的。因此,我们使用MDS来构建一个相似矩阵,使用所得参考向量的数据来可视化度量数据。为了评估结果,我们假设有四种合成路线(Nagai, Leuckart, Emde和还原胺化方法),并且每一种都可以通过比较路线特定的杂质来识别。