Jacob Woodbury, Jessie B. Arneson, Jacey Anderson, Larry B. Collins, A. Cavagnetto, William B. Davis, E. Offerdahl
{"title":"Garden Variety Mutations: Using Primary Data to Understand the Central Dogma in Large-Lecture Introductory Biology","authors":"Jacob Woodbury, Jessie B. Arneson, Jacey Anderson, Larry B. Collins, A. Cavagnetto, William B. Davis, E. Offerdahl","doi":"10.24918/cs.2022.43","DOIUrl":null,"url":null,"abstract":"The ability to interpret and create an argument from data is a crucial skill for budding scientists, yet one that is seldom practiced in introductory courses. During this argumentation module, students in a large lecture class will work in groups to understand how a single mutation can lead to an obvious phenotypic change among tomatoes. Before the module begins, students are provided with background information on mutations and techniques to give them a starting point to explain what they will see in the data. In class, students will use data from the primary literature to understand the relationship between single amino acid mutations and phenotypic variation within the context of a “big question” about garden tomatoes that ripen without turning red. Over two days, small groups will negotiate data, create and evaluate hypotheses","PeriodicalId":72713,"journal":{"name":"CourseSource","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CourseSource","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24918/cs.2022.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The ability to interpret and create an argument from data is a crucial skill for budding scientists, yet one that is seldom practiced in introductory courses. During this argumentation module, students in a large lecture class will work in groups to understand how a single mutation can lead to an obvious phenotypic change among tomatoes. Before the module begins, students are provided with background information on mutations and techniques to give them a starting point to explain what they will see in the data. In class, students will use data from the primary literature to understand the relationship between single amino acid mutations and phenotypic variation within the context of a “big question” about garden tomatoes that ripen without turning red. Over two days, small groups will negotiate data, create and evaluate hypotheses