Kimberly A. Wodzanowski, Madison V. Anonick, Lauren A. Genova, April M. Kloxin, C. Grimes
{"title":"Bringing Pasteur Back to Life: Studying the Biochemistry of Yeast Fermentation Through Discussion Groups and an At-Home Lab","authors":"Kimberly A. Wodzanowski, Madison V. Anonick, Lauren A. Genova, April M. Kloxin, C. Grimes","doi":"10.24918/cs.2023.11","DOIUrl":null,"url":null,"abstract":"This hands-on, student-centered biochemistry lesson introduces beginner biochemistry students to the techniques of effectively reading and discussing primary literature, identifying fundamental biological concepts, and applying that knowledge to design their own experiments. Students begin by reading Louis Pasteur’s article on the discovery of fermentation, a key biochemical concept in metabolism. Using guided questions while they read the primary literature, students dissect the key biochemical concepts of fermentation in student-led discussion groups. Following the group discussion, students “act like Pasteur” by designing their own lab experiment to collect similar data to that in the paper. For the lab activity, students utilize standard home-kitchen techniques and food-grade reagents to grow yeast in different microenvironmental conditions, such as temperature, pH, presence of oxygen, and substrate concentration in water. Here, students apply key laboratory skills such as designing experiments with proper controls, keeping a lab notebook, and communicating results. Students are given the opportunity to pursue variables they find interesting by performing experiments in their own home. Student understanding is assessed through group discussion, completion of learning issue questions, multiple choice quiz questions, midterm questions, and a lab report. This lesson features a diverse array of activities: reading and understanding the primary literature, participating in scientific discussion in small groups, and designing and performing experiments, all essential skills for any future biochemist.","PeriodicalId":72713,"journal":{"name":"CourseSource","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CourseSource","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24918/cs.2023.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This hands-on, student-centered biochemistry lesson introduces beginner biochemistry students to the techniques of effectively reading and discussing primary literature, identifying fundamental biological concepts, and applying that knowledge to design their own experiments. Students begin by reading Louis Pasteur’s article on the discovery of fermentation, a key biochemical concept in metabolism. Using guided questions while they read the primary literature, students dissect the key biochemical concepts of fermentation in student-led discussion groups. Following the group discussion, students “act like Pasteur” by designing their own lab experiment to collect similar data to that in the paper. For the lab activity, students utilize standard home-kitchen techniques and food-grade reagents to grow yeast in different microenvironmental conditions, such as temperature, pH, presence of oxygen, and substrate concentration in water. Here, students apply key laboratory skills such as designing experiments with proper controls, keeping a lab notebook, and communicating results. Students are given the opportunity to pursue variables they find interesting by performing experiments in their own home. Student understanding is assessed through group discussion, completion of learning issue questions, multiple choice quiz questions, midterm questions, and a lab report. This lesson features a diverse array of activities: reading and understanding the primary literature, participating in scientific discussion in small groups, and designing and performing experiments, all essential skills for any future biochemist.