Field estimation of interception in a broadleaf forest under multi-layered structure conditions

IF 0.6 Q4 WATER RESOURCES Hydrological Research Letters Pub Date : 2017-01-01 DOI:10.3178/HRL.11.181
Yutaka Abe, T. Gomi, N. Nakamura, Noriko Kagawa
{"title":"Field estimation of interception in a broadleaf forest under multi-layered structure conditions","authors":"Yutaka Abe, T. Gomi, N. Nakamura, Noriko Kagawa","doi":"10.3178/HRL.11.181","DOIUrl":null,"url":null,"abstract":": We performed a field experiment on throughfall, stemflow, and bamboo culm flow to estimate interception in a deciduous broadleaf forest with different stand structures by separately removing the overstory and understory vegetation. The study area is occupied by oak ( Quercus serrata ) and chestnut ( Castanea crenata ) with an understory of chino bamboo ( Pleioblastus chino ). We established three plots for vegetation control, including an overstory plot (removal of understory), a bamboo plot (removal of over-story), and a control plot (both overstory and understory remained). Throughfall amounts relative to precipitation were 61% in the control plot, 54% in the overstory plot, and 31% in the bamboo plot. Average stemflow in control and overstory plots was 3% of precipitation. The significant difference in throughfall for the bamboo plot may have been caused by the high density of understory vegetation. A large portion of intercepted water is transferred to the ground as bamboo culm flow in the understory beneath the canopy in the control plot and in the bamboo plot. Our experiment highlighted the significance of understory vegetation in altering hydrological processes from canopy to understory vegetation.","PeriodicalId":13111,"journal":{"name":"Hydrological Research Letters","volume":"11 1","pages":"181-186"},"PeriodicalIF":0.6000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3178/HRL.11.181","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3178/HRL.11.181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 4

Abstract

: We performed a field experiment on throughfall, stemflow, and bamboo culm flow to estimate interception in a deciduous broadleaf forest with different stand structures by separately removing the overstory and understory vegetation. The study area is occupied by oak ( Quercus serrata ) and chestnut ( Castanea crenata ) with an understory of chino bamboo ( Pleioblastus chino ). We established three plots for vegetation control, including an overstory plot (removal of understory), a bamboo plot (removal of over-story), and a control plot (both overstory and understory remained). Throughfall amounts relative to precipitation were 61% in the control plot, 54% in the overstory plot, and 31% in the bamboo plot. Average stemflow in control and overstory plots was 3% of precipitation. The significant difference in throughfall for the bamboo plot may have been caused by the high density of understory vegetation. A large portion of intercepted water is transferred to the ground as bamboo culm flow in the understory beneath the canopy in the control plot and in the bamboo plot. Our experiment highlighted the significance of understory vegetation in altering hydrological processes from canopy to understory vegetation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多层结构条件下阔叶林截留量的野外估算
在不同林分结构的落叶阔叶林中,通过分别去除林下植被,通过通量、茎流和竹秆流的田间试验来估算截留量。研究区域被橡树(Quercus serrata)和栗子(Castanea crenata)占据,下层植被为中国竹(Pleioblastus chino)。我们建立了3个植被控制样地,包括一个覆盖层样地(去除林下植被)、一个竹林样地(去除覆盖层)和一个对照样地(保留覆盖层和林下植被)。相对于降水的穿透量在对照样地为61%,在上层样地为54%,在竹林样地为31%。对照和地上层样地平均茎流量为降水量的3%。竹林样地穿透量差异显著可能与林下植被密度高有关。在对照区和竹林区,截留的大部分水以竹秆流的形式在林下被转移到地面。我们的实验强调了林下植被在改变从冠层到林下植被的水文过程中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.90
自引率
18.20%
发文量
9
审稿时长
10 weeks
期刊介绍: Hydrological Research Letters (HRL) is an international and trans-disciplinary electronic online journal published jointly by Japan Society of Hydrology and Water Resources (JSHWR), Japanese Association of Groundwater Hydrology (JAGH), Japanese Association of Hydrological Sciences (JAHS), and Japanese Society of Physical Hydrology (JSPH), aiming at rapid exchange and outgoing of information in these fields. The purpose is to disseminate original research findings and develop debates on a wide range of investigations on hydrology and water resources to researchers, students and the public. It also publishes reviews of various fields on hydrology and water resources and other information of interest to scientists to encourage communication and utilization of the published results. The editors welcome contributions from authors throughout the world. The decision on acceptance of a submitted manuscript is made by the journal editors on the basis of suitability of subject matter to the scope of the journal, originality of the contribution, potential impacts on societies and scientific merit. Manuscripts submitted to HRL may cover all aspects of hydrology and water resources, including research on physical and biological sciences, engineering, and social and political sciences from the aspects of hydrology and water resources.
期刊最新文献
Assessing characteristics and long-term trends in runoff and baseflow index in eastern Japan Uncertainty of internal climate variability in probabilistic flood simulations using d4PDF Developing a vertical quasi-two-dimensional surface-subsurface flow model using an approximation for hydraulic gradient Estimation of groundwater potential and aquifer hydraulic characteristics using resistivity and pumping test techniques in Makassar Indonesia Seasonal variation of physico-chemical characteristics in water of meromictic Lake Oigon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1