{"title":"Bias correction of simulated storm surge height considering coastline complexity","authors":"Jung-A Yang, Sooyoul Kim, N. Mori, H. Mase","doi":"10.3178/HRL.11.121","DOIUrl":null,"url":null,"abstract":"In this study, we propose a new approach for model validation that can be applied to the projection of possible future storm surge heights (SSHs) on the regional scale. First, this study conducts a series of SSHs for the southeastern coast of the Korean Peninsula (KP) by six typhoons that produced SSHs over 1.0 m since 1979 and identifies the bias between simulated and observed SSHs. Next, formulas for the bias correction using a geographic parameter, in particular the coastline complexity factors, are drawn and validated. Finally, the effect of the proposed bias correction on projection of future SSHs is examined by performing simple tests to consider only central pressure drops to reflect the impact of climate change. It can be seen that the bias correction method considering the coastline complexity can improve the model’s accuracy by 14% to 23% and prevent potential overestimation by up to 20% of the maximum SSHs considering climate change effect on the southeastern coast of the KP.","PeriodicalId":13111,"journal":{"name":"Hydrological Research Letters","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3178/HRL.11.121","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3178/HRL.11.121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 7
Abstract
In this study, we propose a new approach for model validation that can be applied to the projection of possible future storm surge heights (SSHs) on the regional scale. First, this study conducts a series of SSHs for the southeastern coast of the Korean Peninsula (KP) by six typhoons that produced SSHs over 1.0 m since 1979 and identifies the bias between simulated and observed SSHs. Next, formulas for the bias correction using a geographic parameter, in particular the coastline complexity factors, are drawn and validated. Finally, the effect of the proposed bias correction on projection of future SSHs is examined by performing simple tests to consider only central pressure drops to reflect the impact of climate change. It can be seen that the bias correction method considering the coastline complexity can improve the model’s accuracy by 14% to 23% and prevent potential overestimation by up to 20% of the maximum SSHs considering climate change effect on the southeastern coast of the KP.
期刊介绍:
Hydrological Research Letters (HRL) is an international and trans-disciplinary electronic online journal published jointly by Japan Society of Hydrology and Water Resources (JSHWR), Japanese Association of Groundwater Hydrology (JAGH), Japanese Association of Hydrological Sciences (JAHS), and Japanese Society of Physical Hydrology (JSPH), aiming at rapid exchange and outgoing of information in these fields. The purpose is to disseminate original research findings and develop debates on a wide range of investigations on hydrology and water resources to researchers, students and the public. It also publishes reviews of various fields on hydrology and water resources and other information of interest to scientists to encourage communication and utilization of the published results. The editors welcome contributions from authors throughout the world. The decision on acceptance of a submitted manuscript is made by the journal editors on the basis of suitability of subject matter to the scope of the journal, originality of the contribution, potential impacts on societies and scientific merit. Manuscripts submitted to HRL may cover all aspects of hydrology and water resources, including research on physical and biological sciences, engineering, and social and political sciences from the aspects of hydrology and water resources.