Identifying climate analogues for cities in Australia by a non-parametric approach using multi-ensemble, high-horizontal-resolution future climate projections by an atmospheric general circulation model, MRI-AGCM3.2H
{"title":"Identifying climate analogues for cities in Australia by a non-parametric approach using multi-ensemble, high-horizontal-resolution future climate projections by an atmospheric general circulation model, MRI-AGCM3.2H","authors":"T. Nakaegawa, K. Hibino, I. Takayabu","doi":"10.3178/HRL.11.72","DOIUrl":null,"url":null,"abstract":": Climate analogues for 17 Australian cities in the current climate (1979–2003) were identified by using a nonparametric climate analogue approach and multi-ensemble future climate projections in the late 21st century (2075– 2099) made with the Meteorological Research Institute’s atmospheric general circulation model, version 3.2H under the Special Report on Emissions Scenarios A1B scenario with a horizontal resolution of about 60 km. By using this approach, climate analogue cities could be identified within the uncertainties of the multi-ensemble future climate projections. A similarity score as a metric of climate analogue is evaluated with the threshold as the quantified uncertainties in nonparametric manner. Ten of the identified climate ana logue cities were in Australia, even in a global search, and the other seven analogue cities were in other continents: five in Africa, one in Mexico, and one in Argentina. In an in-country search, climate analogues for the seven target cit ies whose climate analogues were identified in other parts of the world in the global search were identified in Australia, although the similarity scores were low. Very low similarity scores imply that the future climate of the target city will be novel, that is, a climate that no city is currently experiencing.","PeriodicalId":13111,"journal":{"name":"Hydrological Research Letters","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3178/HRL.11.72","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3178/HRL.11.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 7
Abstract
: Climate analogues for 17 Australian cities in the current climate (1979–2003) were identified by using a nonparametric climate analogue approach and multi-ensemble future climate projections in the late 21st century (2075– 2099) made with the Meteorological Research Institute’s atmospheric general circulation model, version 3.2H under the Special Report on Emissions Scenarios A1B scenario with a horizontal resolution of about 60 km. By using this approach, climate analogue cities could be identified within the uncertainties of the multi-ensemble future climate projections. A similarity score as a metric of climate analogue is evaluated with the threshold as the quantified uncertainties in nonparametric manner. Ten of the identified climate ana logue cities were in Australia, even in a global search, and the other seven analogue cities were in other continents: five in Africa, one in Mexico, and one in Argentina. In an in-country search, climate analogues for the seven target cit ies whose climate analogues were identified in other parts of the world in the global search were identified in Australia, although the similarity scores were low. Very low similarity scores imply that the future climate of the target city will be novel, that is, a climate that no city is currently experiencing.
期刊介绍:
Hydrological Research Letters (HRL) is an international and trans-disciplinary electronic online journal published jointly by Japan Society of Hydrology and Water Resources (JSHWR), Japanese Association of Groundwater Hydrology (JAGH), Japanese Association of Hydrological Sciences (JAHS), and Japanese Society of Physical Hydrology (JSPH), aiming at rapid exchange and outgoing of information in these fields. The purpose is to disseminate original research findings and develop debates on a wide range of investigations on hydrology and water resources to researchers, students and the public. It also publishes reviews of various fields on hydrology and water resources and other information of interest to scientists to encourage communication and utilization of the published results. The editors welcome contributions from authors throughout the world. The decision on acceptance of a submitted manuscript is made by the journal editors on the basis of suitability of subject matter to the scope of the journal, originality of the contribution, potential impacts on societies and scientific merit. Manuscripts submitted to HRL may cover all aspects of hydrology and water resources, including research on physical and biological sciences, engineering, and social and political sciences from the aspects of hydrology and water resources.