Incorporating snow model and snowmelt runoff model for streamflow simulation in a snow-dominated mountainous basin in the western Hindukush-Himalaya region

IF 0.6 Q4 WATER RESOURCES Hydrological Research Letters Pub Date : 2020-01-01 DOI:10.3178/hrl.14.34
Abdul Haseeb Azizi, Y. Asaoka
{"title":"Incorporating snow model and snowmelt runoff model for streamflow simulation in a snow-dominated mountainous basin in the western Hindukush-Himalaya region","authors":"Abdul Haseeb Azizi, Y. Asaoka","doi":"10.3178/hrl.14.34","DOIUrl":null,"url":null,"abstract":": A Snow Model (SM) using a temperature-index method was used to optimize the degree-day factor ( DDF ) and pre‐ cipitation gradient ( PG ) for the different elevation zones of the Panjshir sub-basin for snowmelt runoff modelling. The values derived for DDF and PG were calibrated and vali‐ dated by comparing observed snow cover area and snow cover area simulated by SM. The Snowmelt Runoff Model (SRM) was used to simulate daily runoff over the hydro‐ logical years 2009–2014 using the optimized values for SRM accuracy. The optimized DDF values were 0.3 to 0.9 (cm °C –1 d –1 ) for elevations from 1593 m to 5694 m. Mean‐ while the PG was +0.002 m –1 for elevations 1593–4000 m and 0 m –1 above 4000 m. The simulated runoff by SRM during the entire data period correlated very well with a Nash-Sutcliffe coefficient NS = 0.93 utilizing both observed and simulated snow cover area. This method not only evaluates the characteristics of snowfall and snowmelt in different elevation zones to obtain the DDF and PG , but can also estimate the snowmelt runoff.","PeriodicalId":13111,"journal":{"name":"Hydrological Research Letters","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3178/hrl.14.34","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3178/hrl.14.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 5

Abstract

: A Snow Model (SM) using a temperature-index method was used to optimize the degree-day factor ( DDF ) and pre‐ cipitation gradient ( PG ) for the different elevation zones of the Panjshir sub-basin for snowmelt runoff modelling. The values derived for DDF and PG were calibrated and vali‐ dated by comparing observed snow cover area and snow cover area simulated by SM. The Snowmelt Runoff Model (SRM) was used to simulate daily runoff over the hydro‐ logical years 2009–2014 using the optimized values for SRM accuracy. The optimized DDF values were 0.3 to 0.9 (cm °C –1 d –1 ) for elevations from 1593 m to 5694 m. Mean‐ while the PG was +0.002 m –1 for elevations 1593–4000 m and 0 m –1 above 4000 m. The simulated runoff by SRM during the entire data period correlated very well with a Nash-Sutcliffe coefficient NS = 0.93 utilizing both observed and simulated snow cover area. This method not only evaluates the characteristics of snowfall and snowmelt in different elevation zones to obtain the DDF and PG , but can also estimate the snowmelt runoff.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合积雪模型和融雪径流模型在西兴都库什-喜马拉雅地区积雪为主的山地盆地进行水流模拟
采用温度指数法的积雪模型(SM)优化了潘杰希尔次流域不同高程带的日数因子(DDF)和降水梯度(PG),用于融雪径流模拟。通过比较观测积雪面积和SM模拟积雪面积,对DDF和PG的数值进行了校准和验证。采用融雪径流模型(SRM)对2009-2014年水文年的日径流进行了模拟,得到了SRM精度的优化值。在海拔1593 ~ 5694 m范围内,最佳DDF值为0.3 ~ 0.9 (cm°C -1 d -1)。而海拔1593-4000 m的PG平均值为+0.002 m -1,海拔4000 m以上的PG平均值为0 m -1。利用实测和模拟积雪面积,SRM模拟径流在整个数据期内与Nash-Sutcliffe系数NS = 0.93的相关性非常好。该方法不仅可以评价不同高程带的降雪和融雪特征,得到DDF和PG,还可以估算融雪径流量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.90
自引率
18.20%
发文量
9
审稿时长
10 weeks
期刊介绍: Hydrological Research Letters (HRL) is an international and trans-disciplinary electronic online journal published jointly by Japan Society of Hydrology and Water Resources (JSHWR), Japanese Association of Groundwater Hydrology (JAGH), Japanese Association of Hydrological Sciences (JAHS), and Japanese Society of Physical Hydrology (JSPH), aiming at rapid exchange and outgoing of information in these fields. The purpose is to disseminate original research findings and develop debates on a wide range of investigations on hydrology and water resources to researchers, students and the public. It also publishes reviews of various fields on hydrology and water resources and other information of interest to scientists to encourage communication and utilization of the published results. The editors welcome contributions from authors throughout the world. The decision on acceptance of a submitted manuscript is made by the journal editors on the basis of suitability of subject matter to the scope of the journal, originality of the contribution, potential impacts on societies and scientific merit. Manuscripts submitted to HRL may cover all aspects of hydrology and water resources, including research on physical and biological sciences, engineering, and social and political sciences from the aspects of hydrology and water resources.
期刊最新文献
Assessing characteristics and long-term trends in runoff and baseflow index in eastern Japan Uncertainty of internal climate variability in probabilistic flood simulations using d4PDF Developing a vertical quasi-two-dimensional surface-subsurface flow model using an approximation for hydraulic gradient Estimation of groundwater potential and aquifer hydraulic characteristics using resistivity and pumping test techniques in Makassar Indonesia Seasonal variation of physico-chemical characteristics in water of meromictic Lake Oigon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1