Y. Asada, M. Kimura, Issaku Azechi, T. Iida, Naritaka Kubo
{"title":"Transient damping method for narrowing down leak location in pressurized pipelines","authors":"Y. Asada, M. Kimura, Issaku Azechi, T. Iida, Naritaka Kubo","doi":"10.3178/hrl.14.41","DOIUrl":null,"url":null,"abstract":": Numerous leak detection methods have been developed for pipeline systems because of the shortage of water resources, increased water demand, and leak accidents. These methods have their advantages and disadvantages in terms of cost, labor, and accuracy; therefore, it is important to narrow down the location of a leak as easily, rapidly, and accurately as possible. This study applies the technologies based on the execution of a transient event (transient test-based technologies (TTBTs)), and a model is presented for representing the relation between the leak location and the damping of the pressure transient due to the leakage. The model is verified with laboratory experiments in which the leak location can be narrowed down to be less than 10% to 30% of the total pipe length. The model is found to be more effective if the leak location is nearer to the upstream end. In addition, the leak location found by the damping model varies with an approximate absolute error of 2% to 5% of the pipe length. It is suggested that the damping model is suitable for narrowing down and not for finding the leak location, and should be used in combination with other leak detection methods.","PeriodicalId":13111,"journal":{"name":"Hydrological Research Letters","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3178/hrl.14.41","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3178/hrl.14.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 6
Abstract
: Numerous leak detection methods have been developed for pipeline systems because of the shortage of water resources, increased water demand, and leak accidents. These methods have their advantages and disadvantages in terms of cost, labor, and accuracy; therefore, it is important to narrow down the location of a leak as easily, rapidly, and accurately as possible. This study applies the technologies based on the execution of a transient event (transient test-based technologies (TTBTs)), and a model is presented for representing the relation between the leak location and the damping of the pressure transient due to the leakage. The model is verified with laboratory experiments in which the leak location can be narrowed down to be less than 10% to 30% of the total pipe length. The model is found to be more effective if the leak location is nearer to the upstream end. In addition, the leak location found by the damping model varies with an approximate absolute error of 2% to 5% of the pipe length. It is suggested that the damping model is suitable for narrowing down and not for finding the leak location, and should be used in combination with other leak detection methods.
期刊介绍:
Hydrological Research Letters (HRL) is an international and trans-disciplinary electronic online journal published jointly by Japan Society of Hydrology and Water Resources (JSHWR), Japanese Association of Groundwater Hydrology (JAGH), Japanese Association of Hydrological Sciences (JAHS), and Japanese Society of Physical Hydrology (JSPH), aiming at rapid exchange and outgoing of information in these fields. The purpose is to disseminate original research findings and develop debates on a wide range of investigations on hydrology and water resources to researchers, students and the public. It also publishes reviews of various fields on hydrology and water resources and other information of interest to scientists to encourage communication and utilization of the published results. The editors welcome contributions from authors throughout the world. The decision on acceptance of a submitted manuscript is made by the journal editors on the basis of suitability of subject matter to the scope of the journal, originality of the contribution, potential impacts on societies and scientific merit. Manuscripts submitted to HRL may cover all aspects of hydrology and water resources, including research on physical and biological sciences, engineering, and social and political sciences from the aspects of hydrology and water resources.