Use of high-resolution elevation data to assess the vulnerability of the Bangkok metropolitan area to sea level rise

IF 0.6 Q4 WATER RESOURCES Hydrological Research Letters Pub Date : 2020-01-01 DOI:10.3178/hrl.14.136
T. Tebakari
{"title":"Use of high-resolution elevation data to assess the vulnerability of the Bangkok metropolitan area to sea level rise","authors":"T. Tebakari","doi":"10.3178/hrl.14.136","DOIUrl":null,"url":null,"abstract":"Using high-resolution elevation data (2 m × 2 m), obtained during a 2012 aerial Lidar survey as part of the Chao Phraya River basin flood management project in Thailand, we assessed the impact of sea level rise due to climate change on the Bangkok metropolitan area. The area below the current median tide of 1.11 m was estimated to be 2,520 km2, with a vulnerable population of 3.9 million, equivalent to 23% of the total population of the Bangkok metropolitan area. In the worst-case scenario of Represen‐ tative Concentration Pathway (RCP) 8.5 (sea level rise of +1.10 m), the affected area would extend to 6,140 km2, increasing the estimated vulnerable population by 86% to 7.2 million. With a sea level rise of less than +1.10 m, the affected area would extend from the Chao Phraya River mouth to Suphan Buri, which is about 80 km inland; how‐ ever, the density of the vulnerable population would increase. The results of this study suggest that sea level rise adaptation measures, such as migration and settlement, must be developed as soon as possible.","PeriodicalId":13111,"journal":{"name":"Hydrological Research Letters","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3178/hrl.14.136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Using high-resolution elevation data (2 m × 2 m), obtained during a 2012 aerial Lidar survey as part of the Chao Phraya River basin flood management project in Thailand, we assessed the impact of sea level rise due to climate change on the Bangkok metropolitan area. The area below the current median tide of 1.11 m was estimated to be 2,520 km2, with a vulnerable population of 3.9 million, equivalent to 23% of the total population of the Bangkok metropolitan area. In the worst-case scenario of Represen‐ tative Concentration Pathway (RCP) 8.5 (sea level rise of +1.10 m), the affected area would extend to 6,140 km2, increasing the estimated vulnerable population by 86% to 7.2 million. With a sea level rise of less than +1.10 m, the affected area would extend from the Chao Phraya River mouth to Suphan Buri, which is about 80 km inland; how‐ ever, the density of the vulnerable population would increase. The results of this study suggest that sea level rise adaptation measures, such as migration and settlement, must be developed as soon as possible.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用高分辨率高程数据评估曼谷大都市区对海平面上升的脆弱性
作为泰国湄南河流域洪水管理项目的一部分,我们利用2012年空中激光雷达调查获得的高分辨率高程数据(2米× 2米),评估了气候变化导致的海平面上升对曼谷市区的影响。目前中位水位111米以下的面积估计为2520平方公里,脆弱人口为390万,相当于曼谷大都市区总人口的23%。在代表性浓度路径(RCP) 8.5(海平面上升+1.10 m)的最坏情况下,受影响区域将扩大到6140平方公里,估计脆弱人口将增加86%,达到720万人。如果海平面上升不到+1.10米,受影响的地区将从湄南河河口延伸到内陆约80公里的素潘武里;无论如何,脆弱人口的密度将会增加。这项研究的结果表明,必须尽快制定适应海平面上升的措施,如移民和定居。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.90
自引率
18.20%
发文量
9
审稿时长
10 weeks
期刊介绍: Hydrological Research Letters (HRL) is an international and trans-disciplinary electronic online journal published jointly by Japan Society of Hydrology and Water Resources (JSHWR), Japanese Association of Groundwater Hydrology (JAGH), Japanese Association of Hydrological Sciences (JAHS), and Japanese Society of Physical Hydrology (JSPH), aiming at rapid exchange and outgoing of information in these fields. The purpose is to disseminate original research findings and develop debates on a wide range of investigations on hydrology and water resources to researchers, students and the public. It also publishes reviews of various fields on hydrology and water resources and other information of interest to scientists to encourage communication and utilization of the published results. The editors welcome contributions from authors throughout the world. The decision on acceptance of a submitted manuscript is made by the journal editors on the basis of suitability of subject matter to the scope of the journal, originality of the contribution, potential impacts on societies and scientific merit. Manuscripts submitted to HRL may cover all aspects of hydrology and water resources, including research on physical and biological sciences, engineering, and social and political sciences from the aspects of hydrology and water resources.
期刊最新文献
Assessing characteristics and long-term trends in runoff and baseflow index in eastern Japan Uncertainty of internal climate variability in probabilistic flood simulations using d4PDF Developing a vertical quasi-two-dimensional surface-subsurface flow model using an approximation for hydraulic gradient Estimation of groundwater potential and aquifer hydraulic characteristics using resistivity and pumping test techniques in Makassar Indonesia Seasonal variation of physico-chemical characteristics in water of meromictic Lake Oigon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1