A preliminary observation for quantifying detached stemflow

IF 0.6 Q4 WATER RESOURCES Hydrological Research Letters Pub Date : 2022-01-01 DOI:10.3178/hrl.16.1
K. Shiraki, S. Kawana, Haruna Tsujinaka, Sakura Ariyoshi, Y. Uchiyama
{"title":"A preliminary observation for quantifying detached stemflow","authors":"K. Shiraki, S. Kawana, Haruna Tsujinaka, Sakura Ariyoshi, Y. Uchiyama","doi":"10.3178/hrl.16.1","DOIUrl":null,"url":null,"abstract":": Detached stemflow has been defined as rainwater that breaks away from the stemflow and falls around the trees as throughfall. Quantitative measurements of detached stem‐ flow were taken for two sample broadleaf trees on the university campus. Zelkova, with smooth bark, has a tree structure that concentrates rainwater, producing a large amount of stemflow. A rainwater collection system installed around the trunk can capture large amounts of throughfall as detached stemflow. The detached stemflow amount had almost doubled in water height equivalent to throughfall at the tree stand. Therefore, some trees generate much throughfall in the forest near the trunk. In the case of the Katsura tree, however, the stemflow was low. The throughfall attributable to the detached stemflow was less than the average throughfall. This low stemflow generation was assumed to be due to the roughness of the Katsura bark. The rainwater which attaches to the trunk and branches breaks away easily. Presumably, the leaves near the trunk intercept raindrops and disperse the rainwater to the surroundings. The detached stemflow can constitute a large quantity. It can be expected to be related closely to the stemflow generation mechanism.","PeriodicalId":13111,"journal":{"name":"Hydrological Research Letters","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3178/hrl.16.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 1

Abstract

: Detached stemflow has been defined as rainwater that breaks away from the stemflow and falls around the trees as throughfall. Quantitative measurements of detached stem‐ flow were taken for two sample broadleaf trees on the university campus. Zelkova, with smooth bark, has a tree structure that concentrates rainwater, producing a large amount of stemflow. A rainwater collection system installed around the trunk can capture large amounts of throughfall as detached stemflow. The detached stemflow amount had almost doubled in water height equivalent to throughfall at the tree stand. Therefore, some trees generate much throughfall in the forest near the trunk. In the case of the Katsura tree, however, the stemflow was low. The throughfall attributable to the detached stemflow was less than the average throughfall. This low stemflow generation was assumed to be due to the roughness of the Katsura bark. The rainwater which attaches to the trunk and branches breaks away easily. Presumably, the leaves near the trunk intercept raindrops and disperse the rainwater to the surroundings. The detached stemflow can constitute a large quantity. It can be expected to be related closely to the stemflow generation mechanism.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离体茎流定量的初步观察
分离的茎流被定义为从茎流中分离出来的雨水,以通雨的形式落在树木周围。对大学校园内的两棵阔叶树样本进行了分离茎流的定量测量。Zelkova树皮光滑,树状结构可以集中雨水,产生大量茎流。在树干周围安装的雨水收集系统可以收集大量的雨水作为分离的茎流。离体茎流量在水高度上几乎增加了一倍,相当于在林分处的通流。因此,有些树在树干附近的森林中产生大量的通流。然而,在桂树的例子中,茎流很低。茎流分离导致的通流小于平均通流。这种低茎流的产生被认为是由于桂树树皮的粗糙。附着在树干和树枝上的雨水很容易脱落。据推测,树干附近的叶子会拦截雨滴,并将雨水分散到周围。离体茎流可以构成大量。这可能与茎流的产生机制密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.90
自引率
18.20%
发文量
9
审稿时长
10 weeks
期刊介绍: Hydrological Research Letters (HRL) is an international and trans-disciplinary electronic online journal published jointly by Japan Society of Hydrology and Water Resources (JSHWR), Japanese Association of Groundwater Hydrology (JAGH), Japanese Association of Hydrological Sciences (JAHS), and Japanese Society of Physical Hydrology (JSPH), aiming at rapid exchange and outgoing of information in these fields. The purpose is to disseminate original research findings and develop debates on a wide range of investigations on hydrology and water resources to researchers, students and the public. It also publishes reviews of various fields on hydrology and water resources and other information of interest to scientists to encourage communication and utilization of the published results. The editors welcome contributions from authors throughout the world. The decision on acceptance of a submitted manuscript is made by the journal editors on the basis of suitability of subject matter to the scope of the journal, originality of the contribution, potential impacts on societies and scientific merit. Manuscripts submitted to HRL may cover all aspects of hydrology and water resources, including research on physical and biological sciences, engineering, and social and political sciences from the aspects of hydrology and water resources.
期刊最新文献
Assessing characteristics and long-term trends in runoff and baseflow index in eastern Japan Uncertainty of internal climate variability in probabilistic flood simulations using d4PDF Developing a vertical quasi-two-dimensional surface-subsurface flow model using an approximation for hydraulic gradient Estimation of groundwater potential and aquifer hydraulic characteristics using resistivity and pumping test techniques in Makassar Indonesia Seasonal variation of physico-chemical characteristics in water of meromictic Lake Oigon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1