{"title":"Comparison of runoff generation methods for land use impact assessment using the SWAT model in humid tropics","authors":"E. Yamamoto, T. Sayama, Kodai Yamamoto, Apip","doi":"10.3178/hrl.14.81","DOIUrl":null,"url":null,"abstract":"Hydrological responses due to deforestation in a humid tropical catchment were analyzed using two runoff genera‐ tion methods available in the Soil Water Assessment Tool (SWAT) model: the Curve Number (CN) and the GreenAmpt (GA) methods. The calibrated model, which per‐ formed well in simulating runoff under present land use condition in the Batanghari River Basin, Indonesia (42,960 km2), was then used to simulate runoff using past and future land use scenarios. Simulations showed similar changes in the annual water budget: decreasing evaporation and increasing total discharge. However, the two methods showed opposite changes in flow regimes: high flow increased (13%) under the CN while low flow increased (27%) under the GA. These results are associated with dif‐ ferences in runoff generation mechanisms, where surface runoff contributes to total discharge to a much larger extent under the CN (43%) than the GA (4%). Land use changes caused a reduction in infiltration rate, leading to higher high flow under the CN, while high flow did not change under the GA. Instead, lower evapotranspiration increased groundwater flow under the GA, and thus the steady low flow increased. This study suggests that the runoff genera‐ tion method should be selected carefully based on the dom‐ inant flow pathway of a catchment, particularly for land use impact studies in the humid tropics.","PeriodicalId":13111,"journal":{"name":"Hydrological Research Letters","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3178/hrl.14.81","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3178/hrl.14.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 8
Abstract
Hydrological responses due to deforestation in a humid tropical catchment were analyzed using two runoff genera‐ tion methods available in the Soil Water Assessment Tool (SWAT) model: the Curve Number (CN) and the GreenAmpt (GA) methods. The calibrated model, which per‐ formed well in simulating runoff under present land use condition in the Batanghari River Basin, Indonesia (42,960 km2), was then used to simulate runoff using past and future land use scenarios. Simulations showed similar changes in the annual water budget: decreasing evaporation and increasing total discharge. However, the two methods showed opposite changes in flow regimes: high flow increased (13%) under the CN while low flow increased (27%) under the GA. These results are associated with dif‐ ferences in runoff generation mechanisms, where surface runoff contributes to total discharge to a much larger extent under the CN (43%) than the GA (4%). Land use changes caused a reduction in infiltration rate, leading to higher high flow under the CN, while high flow did not change under the GA. Instead, lower evapotranspiration increased groundwater flow under the GA, and thus the steady low flow increased. This study suggests that the runoff genera‐ tion method should be selected carefully based on the dom‐ inant flow pathway of a catchment, particularly for land use impact studies in the humid tropics.
期刊介绍:
Hydrological Research Letters (HRL) is an international and trans-disciplinary electronic online journal published jointly by Japan Society of Hydrology and Water Resources (JSHWR), Japanese Association of Groundwater Hydrology (JAGH), Japanese Association of Hydrological Sciences (JAHS), and Japanese Society of Physical Hydrology (JSPH), aiming at rapid exchange and outgoing of information in these fields. The purpose is to disseminate original research findings and develop debates on a wide range of investigations on hydrology and water resources to researchers, students and the public. It also publishes reviews of various fields on hydrology and water resources and other information of interest to scientists to encourage communication and utilization of the published results. The editors welcome contributions from authors throughout the world. The decision on acceptance of a submitted manuscript is made by the journal editors on the basis of suitability of subject matter to the scope of the journal, originality of the contribution, potential impacts on societies and scientific merit. Manuscripts submitted to HRL may cover all aspects of hydrology and water resources, including research on physical and biological sciences, engineering, and social and political sciences from the aspects of hydrology and water resources.