Yearly change in severely salt-damaged areas in paddy fields in Ban Phai in Northeast Thailand

IF 0.6 Q4 WATER RESOURCES Hydrological Research Letters Pub Date : 2022-01-01 DOI:10.3178/hrl.16.7
Yi Yang, M. Maki, Rongling Ye, Daiki Saito, Thanyaluck Nontasri, M. Srisutham, Supranee Sritumboon, S. Sukchan, Koshi Yoshida, K. Oki, K. Homma
{"title":"Yearly change in severely salt-damaged areas in paddy fields in Ban Phai in Northeast Thailand","authors":"Yi Yang, M. Maki, Rongling Ye, Daiki Saito, Thanyaluck Nontasri, M. Srisutham, Supranee Sritumboon, S. Sukchan, Koshi Yoshida, K. Oki, K. Homma","doi":"10.3178/hrl.16.7","DOIUrl":null,"url":null,"abstract":": Future expansion of salt-damaged areas is anticipated in Northeast Thailand. We conducted a field investigation of paddy fields from 2016 to 2019 in Ban Phai district, Khon Kaen province in Northeast Thailand to evaluate yearly changes in the effect of salinity damage on rice production. The investigation area was classified into severely salt-affected areas (2 nd of 5 classes) based on the definition used in Thailand. Since salinity severely damages rice produc‐ tion, rice cultivation was abandoned in some fields, although some were still planted. The soil electrical con‐ ductivity (EC) in the rice-planted paddy fields changed yearly in association with the amount of precipitation. The effect of the difference in EC on rice yield was moderate, suggesting that rice yield was mediated by surface water. Some areas in the abandoned fields did not have any vege‐ tation, and quite high soil EC values were observed. The non-vegetated areas evaluated based on yearly unmanned aerial vehicle (UAV) images changed partly due to the amount of precipitation. However, some non-vegetated areas decreased in contrast to the decrease in precipitation, probably because of the effect of groundwater. Although the continuous expansion of severely salt-damaged areas was not observed, the monitoring of salinity levels is rec‐ ommended for the future.","PeriodicalId":13111,"journal":{"name":"Hydrological Research Letters","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3178/hrl.16.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 2

Abstract

: Future expansion of salt-damaged areas is anticipated in Northeast Thailand. We conducted a field investigation of paddy fields from 2016 to 2019 in Ban Phai district, Khon Kaen province in Northeast Thailand to evaluate yearly changes in the effect of salinity damage on rice production. The investigation area was classified into severely salt-affected areas (2 nd of 5 classes) based on the definition used in Thailand. Since salinity severely damages rice produc‐ tion, rice cultivation was abandoned in some fields, although some were still planted. The soil electrical con‐ ductivity (EC) in the rice-planted paddy fields changed yearly in association with the amount of precipitation. The effect of the difference in EC on rice yield was moderate, suggesting that rice yield was mediated by surface water. Some areas in the abandoned fields did not have any vege‐ tation, and quite high soil EC values were observed. The non-vegetated areas evaluated based on yearly unmanned aerial vehicle (UAV) images changed partly due to the amount of precipitation. However, some non-vegetated areas decreased in contrast to the decrease in precipitation, probably because of the effect of groundwater. Although the continuous expansion of severely salt-damaged areas was not observed, the monitoring of salinity levels is rec‐ ommended for the future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
泰国东北部班派严重盐害地区稻田的年变化
预计泰国东北部的盐害地区将进一步扩大。2016 - 2019年,我们对泰国东北部孔敬省Ban Phai地区的稻田进行了实地调查,以评估盐害对水稻生产影响的年度变化。根据泰国使用的定义,将调查区域划分为严重盐害地区(5类中的第2类)。由于盐碱化严重损害水稻生产,一些田地放弃了水稻种植,尽管有些田地仍在种植。稻田土壤电导率(EC)随降水量的变化而逐年变化。土壤水分对水稻产量的影响不大,表明水稻产量是由地表水调节的。废弃地部分地区没有植被,土壤EC值较高。基于年度无人机(UAV)图像评估的非植被区域的变化部分是由于降雨量的变化。然而,与降水减少相反,一些非植被地区减少了,这可能是由于地下水的影响。虽然没有观察到严重盐损地区的持续扩大,但建议今后监测盐度水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.90
自引率
18.20%
发文量
9
审稿时长
10 weeks
期刊介绍: Hydrological Research Letters (HRL) is an international and trans-disciplinary electronic online journal published jointly by Japan Society of Hydrology and Water Resources (JSHWR), Japanese Association of Groundwater Hydrology (JAGH), Japanese Association of Hydrological Sciences (JAHS), and Japanese Society of Physical Hydrology (JSPH), aiming at rapid exchange and outgoing of information in these fields. The purpose is to disseminate original research findings and develop debates on a wide range of investigations on hydrology and water resources to researchers, students and the public. It also publishes reviews of various fields on hydrology and water resources and other information of interest to scientists to encourage communication and utilization of the published results. The editors welcome contributions from authors throughout the world. The decision on acceptance of a submitted manuscript is made by the journal editors on the basis of suitability of subject matter to the scope of the journal, originality of the contribution, potential impacts on societies and scientific merit. Manuscripts submitted to HRL may cover all aspects of hydrology and water resources, including research on physical and biological sciences, engineering, and social and political sciences from the aspects of hydrology and water resources.
期刊最新文献
Assessing characteristics and long-term trends in runoff and baseflow index in eastern Japan Uncertainty of internal climate variability in probabilistic flood simulations using d4PDF Developing a vertical quasi-two-dimensional surface-subsurface flow model using an approximation for hydraulic gradient Estimation of groundwater potential and aquifer hydraulic characteristics using resistivity and pumping test techniques in Makassar Indonesia Seasonal variation of physico-chemical characteristics in water of meromictic Lake Oigon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1