Elvis Krulčić, S. Doboviček, D. Matika, D. Pavletić
{"title":"Design for Six Sigma Digital Model for Manufacturing Process Design","authors":"Elvis Krulčić, S. Doboviček, D. Matika, D. Pavletić","doi":"10.31803/tg-20230416204744","DOIUrl":null,"url":null,"abstract":"The transition to digital manufacturing has become more important as the quantity and quality of the use of computer systems in manufacturing companies has increased. It has become necessary to model, simulate and analyse all machines, tools, and raw materials to optimise the manufacturing process. It is even better to determine the best possible solution at the stage of defining the manufacturing process by using technologies that analyse data from simulations to calculate an optimal design before it is even built. In this paper, Design for Six Sigma (DFSS) principles are applied to analyse different scenarios using digital twin models for simulation to determine the best configuration for the manufacturing system. The simulation results were combined with multi-criteria decision-making (MCDM) methods to define a model with the best possible overall equipment effectiveness (OEE). The OEE parameter reliability was identified as the most influential factor in the final determination of the most effective and economical manufacturing process configuration.","PeriodicalId":43419,"journal":{"name":"TEHNICKI GLASNIK-TECHNICAL JOURNAL","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEHNICKI GLASNIK-TECHNICAL JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31803/tg-20230416204744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The transition to digital manufacturing has become more important as the quantity and quality of the use of computer systems in manufacturing companies has increased. It has become necessary to model, simulate and analyse all machines, tools, and raw materials to optimise the manufacturing process. It is even better to determine the best possible solution at the stage of defining the manufacturing process by using technologies that analyse data from simulations to calculate an optimal design before it is even built. In this paper, Design for Six Sigma (DFSS) principles are applied to analyse different scenarios using digital twin models for simulation to determine the best configuration for the manufacturing system. The simulation results were combined with multi-criteria decision-making (MCDM) methods to define a model with the best possible overall equipment effectiveness (OEE). The OEE parameter reliability was identified as the most influential factor in the final determination of the most effective and economical manufacturing process configuration.