{"title":"Improving the Performance of Patch Antenna by Applying Bandwidth Enhancement Techniques for 5G Applications","authors":"Seda Ermis, Murat Demirci","doi":"10.31803/tg-20220819001236","DOIUrl":null,"url":null,"abstract":"In this study, various Rectangular Microstrip Antenna (RMA) designs operating at 28 GHz frequency for 5G-communication system are performed. All designs are generated and analyzed using a 3D electromagnetic simulation program, ANSYS HFSS (High-Frequency Structure Simulator). Single and array type RMA designs are constructed by using non-contact inset-fed feeding technique. Subsequently, the bandwidth of RMAs is increased by slotting on the ground surface, and adding a parasitic element to the antenna structure. Because of these analyses, for single type RMA, the bandwidth increases from 2.09 GHz to 3.45 GHz. Moreover, for 1 × 2 and 1 × 4 array type RMAs, very wide bandwidths of 7.53 GHz and 4.53 GHz, respectively, are obtained by applying bandwidth enhancement techniques. The success of the study has been demonstrated by comparing outputs of the designs with the some similar, experimental or simulation studies published in the literature.","PeriodicalId":43419,"journal":{"name":"TEHNICKI GLASNIK-TECHNICAL JOURNAL","volume":"10 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEHNICKI GLASNIK-TECHNICAL JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31803/tg-20220819001236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, various Rectangular Microstrip Antenna (RMA) designs operating at 28 GHz frequency for 5G-communication system are performed. All designs are generated and analyzed using a 3D electromagnetic simulation program, ANSYS HFSS (High-Frequency Structure Simulator). Single and array type RMA designs are constructed by using non-contact inset-fed feeding technique. Subsequently, the bandwidth of RMAs is increased by slotting on the ground surface, and adding a parasitic element to the antenna structure. Because of these analyses, for single type RMA, the bandwidth increases from 2.09 GHz to 3.45 GHz. Moreover, for 1 × 2 and 1 × 4 array type RMAs, very wide bandwidths of 7.53 GHz and 4.53 GHz, respectively, are obtained by applying bandwidth enhancement techniques. The success of the study has been demonstrated by comparing outputs of the designs with the some similar, experimental or simulation studies published in the literature.