Tuning Cu/Cu2O Interfaces for the Reduction of Carbon Dioxide to Methanol in Aqueous Solutions

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL ACS Energy Letters Pub Date : 2018-10-17 DOI:10.1002/anie.201805256
Dr. Xiaoxia Chang, Prof.?Dr. Tuo Wang, Dr. Zhi-Jian Zhao, Piaoping Yang, Prof.?Dr. Jeffrey Greeley, Dr. Rentao Mu, Gong Zhang, Zhongmiao Gong, Dr. Zhibin Luo, Dr. Jun Chen, Dr. Yi Cui, Prof.?Dr. Geoffrey A. Ozin, Prof.?Dr. Jinlong Gong
{"title":"Tuning Cu/Cu2O Interfaces for the Reduction of Carbon Dioxide to Methanol in Aqueous Solutions","authors":"Dr. Xiaoxia Chang,&nbsp;Prof.?Dr. Tuo Wang,&nbsp;Dr. Zhi-Jian Zhao,&nbsp;Piaoping Yang,&nbsp;Prof.?Dr. Jeffrey Greeley,&nbsp;Dr. Rentao Mu,&nbsp;Gong Zhang,&nbsp;Zhongmiao Gong,&nbsp;Dr. Zhibin Luo,&nbsp;Dr. Jun Chen,&nbsp;Dr. Yi Cui,&nbsp;Prof.?Dr. Geoffrey A. Ozin,&nbsp;Prof.?Dr. Jinlong Gong","doi":"10.1002/anie.201805256","DOIUrl":null,"url":null,"abstract":"<p>Artificial photosynthesis can be used to store solar energy and reduce CO<sub>2</sub> into fuels to potentially alleviate global warming and the energy crisis. Compared to the generation of gaseous products, it remains a great challenge to tune the product distribution of artificial photosynthesis to liquid fuels, such as CH<sub>3</sub>OH, which are suitable for storage and transport. Herein, we describe the introduction of metallic Cu nanoparticles (NPs) on Cu<sub>2</sub>O films to change the product distribution from gaseous products on bare Cu<sub>2</sub>O to predominantly CH<sub>3</sub>OH by CO<sub>2</sub> reduction in aqueous solutions. The specifically designed Cu/Cu<sub>2</sub>O interfaces balance the binding strengths of H* and CO* intermediates, which play critical roles in CH<sub>3</sub>OH production. With a TiO<sub>2</sub> model photoanode to construct a photoelectrochemical cell, a Cu/Cu<sub>2</sub>O dark cathode exhibited a Faradaic efficiency of up to 53.6 % for CH<sub>3</sub>OH production. This work demonstrates the feasibility and mechanism of interface engineering to enhance the CH<sub>3</sub>OH production from CO<sub>2</sub> reduction in aqueous electrolytes.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2018-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/anie.201805256","citationCount":"143","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.201805256","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 143

Abstract

Artificial photosynthesis can be used to store solar energy and reduce CO2 into fuels to potentially alleviate global warming and the energy crisis. Compared to the generation of gaseous products, it remains a great challenge to tune the product distribution of artificial photosynthesis to liquid fuels, such as CH3OH, which are suitable for storage and transport. Herein, we describe the introduction of metallic Cu nanoparticles (NPs) on Cu2O films to change the product distribution from gaseous products on bare Cu2O to predominantly CH3OH by CO2 reduction in aqueous solutions. The specifically designed Cu/Cu2O interfaces balance the binding strengths of H* and CO* intermediates, which play critical roles in CH3OH production. With a TiO2 model photoanode to construct a photoelectrochemical cell, a Cu/Cu2O dark cathode exhibited a Faradaic efficiency of up to 53.6 % for CH3OH production. This work demonstrates the feasibility and mechanism of interface engineering to enhance the CH3OH production from CO2 reduction in aqueous electrolytes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调整Cu/Cu2O界面使二氧化碳在水溶液中还原为甲醇
人工光合作用可以用来储存太阳能,减少二氧化碳转化为燃料,从而有可能缓解全球变暖和能源危机。与产生气态产物相比,将人工光合作用的产物分布调整为适合储存和运输的液体燃料,如CH3OH,仍然是一个巨大的挑战。在此,我们描述了在Cu2O薄膜上引入金属Cu纳米颗粒(NPs),通过在水溶液中CO2还原,将产物分布从裸Cu2O上的气态产物转变为以CH3OH为主。特别设计的Cu/Cu2O界面平衡了H*和CO*中间体的结合强度,这在CH3OH的生成中起着关键作用。用TiO2模型光阳极构建电化学电池,Cu/Cu2O暗阴极制备CH3OH的法拉第效率高达53.6%。本研究证明了界面工程提高水溶液中CO2还原生成CH3OH的可行性和机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
期刊最新文献
Simultaneously Strengthening and Toughening All-Natural Structural Materials via 3D Nanofiber Network Interfacial Design. Living Hybrid Exciton Materials: Enhanced Fluorescence and Chiroptical Properties in Living Supramolecular Polymers with Strong Frenkel/Charge-Transfer Exciton Coupling. Enhanced Charge-Carrier Dynamics and Efficient Photoelectrochemical Nitrate-to-Ammonia Conversion on Antimony Sulfide-Based Photocathodes. Mechanistic Insights into Curvature Formation in Synthetic Vesicles. The Fate of the Formic Acid Proton on the Anatase TiO2(101) Surface.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1