Analyzing Reinforcement Learning Algorithms for Nitrogen Fertilizer Management in Simulated Crop Growth

Michael Vogt, Benjamin Rosman
{"title":"Analyzing Reinforcement Learning Algorithms for Nitrogen Fertilizer Management in Simulated Crop Growth","authors":"Michael Vogt, Benjamin Rosman","doi":"10.29007/1v4x","DOIUrl":null,"url":null,"abstract":"Establishing intelligent crop management techniques for preserving the soil, while providing next-generational food supply for an increasing population is critical. Nitrogen fertilizer is used in current farming practice as a way of encouraging crop development; however, its excessive use is found to have disastrous and long-lasting effects on the environment. This can be reduced through the optimization of fertilizer application strategies. In this work, we apply a set of reinforcement learning algorithms – the DQN, Double DQN, Dueling DDQN, and PPO – to learn novel strategies for reducing this application in a simulated crop growth setting. We provide an analysis of each agent’s ability and show that the Dueling DDQN agent can learn favourable strategies for minimizing nitrogen fertilizer application amounts, while maintaining a sufficient yield comparable to standard farming practice.","PeriodicalId":93549,"journal":{"name":"EPiC series in computing","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPiC series in computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29007/1v4x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Establishing intelligent crop management techniques for preserving the soil, while providing next-generational food supply for an increasing population is critical. Nitrogen fertilizer is used in current farming practice as a way of encouraging crop development; however, its excessive use is found to have disastrous and long-lasting effects on the environment. This can be reduced through the optimization of fertilizer application strategies. In this work, we apply a set of reinforcement learning algorithms – the DQN, Double DQN, Dueling DDQN, and PPO – to learn novel strategies for reducing this application in a simulated crop growth setting. We provide an analysis of each agent’s ability and show that the Dueling DDQN agent can learn favourable strategies for minimizing nitrogen fertilizer application amounts, while maintaining a sufficient yield comparable to standard farming practice.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟作物生长过程中氮肥管理的强化学习算法分析
建立智能作物管理技术来保护土壤,同时为不断增长的人口提供下一代食物供应是至关重要的。在目前的农业实践中,氮肥被用作促进作物生长的一种方式;然而,人们发现它的过度使用对环境产生了灾难性和持久的影响。这可以通过优化施肥策略来减少。在这项工作中,我们应用了一组强化学习算法- DQN, Double DQN, Dueling DDQN和PPO -来学习在模拟作物生长环境中减少这种应用的新策略。我们对每种药剂的能力进行了分析,并表明Dueling DDQN药剂可以学习到减少氮肥施用量的有利策略,同时保持与标准农业实践相当的足够产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
ARCH-COMP23 Category Report: Hybrid Systems Theorem Proving ARCH-COMP23 Category Report: Continuous and Hybrid Systems with Linear Continuous Dynamics ARCH-COMP23 Category Report: Continuous and Hybrid Systems with Nonlinear Dynamics ARCH-COMP23 Repeatability Evaluation Report ARCH-COMP23 Category Report: Artificial Intelligence and Neural Network Control Systems (AINNCS) for Continuous and Hybrid Systems Plants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1