{"title":"Analysis of shape, size and structure dependent thermodynamic properties of nanowires","authors":"M. Goyal, B. Gupta","doi":"10.32908/hthp.v48.733","DOIUrl":null,"url":null,"abstract":"A simple model based on thermodynamic variables is used to study the effect of shape, size and structure on the various thermodynamic properties of nanowires. The expression of cohesive energy derived by Qi and Wang [16] is used and ratio of surface atoms to total number of atoms is expressed in terms of shape parameter, radius of nanowire and atomic packing fraction. The variation in cohesive energy, activation energy, melting temperature surface energy, Bulk modulus, Energy band gap Debye temperature and coefficient of volume thermal expansion in nanowires of Zn, β-Sn, TiO 2 (rutile) is studied for cylindrical, triangular, tetragonal, hexagonal and rectangular nanowires using the model. The results obtained are compared with the experimental data available and results from Guisbiers model [11, 12]. The values predicated from the present model are found close to Guisbiers model results and available experimental data.","PeriodicalId":12983,"journal":{"name":"High Temperatures-high Pressures","volume":"48 1","pages":"481-495"},"PeriodicalIF":1.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperatures-high Pressures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.32908/hthp.v48.733","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 30
Abstract
A simple model based on thermodynamic variables is used to study the effect of shape, size and structure on the various thermodynamic properties of nanowires. The expression of cohesive energy derived by Qi and Wang [16] is used and ratio of surface atoms to total number of atoms is expressed in terms of shape parameter, radius of nanowire and atomic packing fraction. The variation in cohesive energy, activation energy, melting temperature surface energy, Bulk modulus, Energy band gap Debye temperature and coefficient of volume thermal expansion in nanowires of Zn, β-Sn, TiO 2 (rutile) is studied for cylindrical, triangular, tetragonal, hexagonal and rectangular nanowires using the model. The results obtained are compared with the experimental data available and results from Guisbiers model [11, 12]. The values predicated from the present model are found close to Guisbiers model results and available experimental data.
期刊介绍:
High Temperatures – High Pressures (HTHP) is an international journal publishing original peer-reviewed papers devoted to experimental and theoretical studies on thermophysical properties of matter, as well as experimental and modelling solutions for applications where control of thermophysical properties is critical, e.g. additive manufacturing. These studies deal with thermodynamic, thermal, and mechanical behaviour of materials, including transport and radiative properties. The journal provides a platform for disseminating knowledge of thermophysical properties, their measurement, their applications, equipment and techniques. HTHP covers the thermophysical properties of gases, liquids, and solids at all temperatures and under all physical conditions, with special emphasis on matter and applications under extreme conditions, e.g. high temperatures and high pressures. Additionally, HTHP publishes authoritative reviews of advances in thermophysics research, critical compilations of existing data, new technology, and industrial applications, plus book reviews.