Saad Tariq, A. Batool, M. Faridi, M. Jamil, A. Mubarak, Nosheen Akbar
{"title":"Influence of pressure on electro-mechanical properties of SrNbO3: A DFT study","authors":"Saad Tariq, A. Batool, M. Faridi, M. Jamil, A. Mubarak, Nosheen Akbar","doi":"10.32908/hthp.v48.763","DOIUrl":null,"url":null,"abstract":"In the enclosure of density functional theory along with GGA (generalized gradient approximation), incorporated in Wien2k code has been utilized to explore structural, electronic and mechanical properties of SrNbO3 (SNO). It has been found that spin-polarized phase of SNO is most stable at 60 GPa with the calculated lattice constant of 3.801 Å. The calculated lattice constant and bulk modulus at 0 GPa are found to be in agreement with literature. The present calculations predict that SNO is stable and antiferromagnetic in nature up to 60 GPa. The calculated charge density contours and Cauchy pressure depicts majority of the bonding nature between the content atoms of SNO is ionic with a small contribution of covalent bond. The band-gap is found traverse from indirect R-Г gap under 0 GPa to wider direct Г-Г gap under 60 GPa. Furthermore, calculated elastic constants, C11, C12 and C44 suggest that compound is stable up to 60 GPa and exhibits ductile, anisotropic nature. Beneficial electronic and mechanical applications are predicted for SNO that could be used in optoelectronic applications.","PeriodicalId":12983,"journal":{"name":"High Temperatures-high Pressures","volume":"48 1","pages":"399-411"},"PeriodicalIF":1.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperatures-high Pressures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.32908/hthp.v48.763","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2
Abstract
In the enclosure of density functional theory along with GGA (generalized gradient approximation), incorporated in Wien2k code has been utilized to explore structural, electronic and mechanical properties of SrNbO3 (SNO). It has been found that spin-polarized phase of SNO is most stable at 60 GPa with the calculated lattice constant of 3.801 Å. The calculated lattice constant and bulk modulus at 0 GPa are found to be in agreement with literature. The present calculations predict that SNO is stable and antiferromagnetic in nature up to 60 GPa. The calculated charge density contours and Cauchy pressure depicts majority of the bonding nature between the content atoms of SNO is ionic with a small contribution of covalent bond. The band-gap is found traverse from indirect R-Г gap under 0 GPa to wider direct Г-Г gap under 60 GPa. Furthermore, calculated elastic constants, C11, C12 and C44 suggest that compound is stable up to 60 GPa and exhibits ductile, anisotropic nature. Beneficial electronic and mechanical applications are predicted for SNO that could be used in optoelectronic applications.
期刊介绍:
High Temperatures – High Pressures (HTHP) is an international journal publishing original peer-reviewed papers devoted to experimental and theoretical studies on thermophysical properties of matter, as well as experimental and modelling solutions for applications where control of thermophysical properties is critical, e.g. additive manufacturing. These studies deal with thermodynamic, thermal, and mechanical behaviour of materials, including transport and radiative properties. The journal provides a platform for disseminating knowledge of thermophysical properties, their measurement, their applications, equipment and techniques. HTHP covers the thermophysical properties of gases, liquids, and solids at all temperatures and under all physical conditions, with special emphasis on matter and applications under extreme conditions, e.g. high temperatures and high pressures. Additionally, HTHP publishes authoritative reviews of advances in thermophysics research, critical compilations of existing data, new technology, and industrial applications, plus book reviews.