{"title":"Methods of temperature determination and measurement verification in applications related to hot die forging processes","authors":"M. Hawryluk, P. Widomski, M. Kaszuba, S. Polak","doi":"10.32908/hthp.v49.793","DOIUrl":null,"url":null,"abstract":"The article concerns the analysis of selected and the most frequently used methods for temperature measurements in the aspect of their correct use in engineering applications related to industrial die forging processes. The research used the three most popular measuring devices, such as: monochromatic pyrometers with the simultaneous measurement of K-type thermocouple and thermal imaging camera. The research concerned mainly temperature measurements for forging tools divided into several stages in which individual tests were carried out, making detailed analyzes and indicating the most important measurement problems. Each subsequent research stage was in some way a consequence of the previous one. On this basis, the potential advantages and disadvantages of individual measurement methods were indicated and how one method can be verified by another one. It was indicated how and to what the best method or device should be used, so that the obtained result was correct and the person/engineer conducting such measurements was aware of the consequences of the conducted research and the problem of temperature measurements.","PeriodicalId":12983,"journal":{"name":"High Temperatures-high Pressures","volume":"49 1","pages":"223-239"},"PeriodicalIF":1.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperatures-high Pressures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.32908/hthp.v49.793","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3
Abstract
The article concerns the analysis of selected and the most frequently used methods for temperature measurements in the aspect of their correct use in engineering applications related to industrial die forging processes. The research used the three most popular measuring devices, such as: monochromatic pyrometers with the simultaneous measurement of K-type thermocouple and thermal imaging camera. The research concerned mainly temperature measurements for forging tools divided into several stages in which individual tests were carried out, making detailed analyzes and indicating the most important measurement problems. Each subsequent research stage was in some way a consequence of the previous one. On this basis, the potential advantages and disadvantages of individual measurement methods were indicated and how one method can be verified by another one. It was indicated how and to what the best method or device should be used, so that the obtained result was correct and the person/engineer conducting such measurements was aware of the consequences of the conducted research and the problem of temperature measurements.
期刊介绍:
High Temperatures – High Pressures (HTHP) is an international journal publishing original peer-reviewed papers devoted to experimental and theoretical studies on thermophysical properties of matter, as well as experimental and modelling solutions for applications where control of thermophysical properties is critical, e.g. additive manufacturing. These studies deal with thermodynamic, thermal, and mechanical behaviour of materials, including transport and radiative properties. The journal provides a platform for disseminating knowledge of thermophysical properties, their measurement, their applications, equipment and techniques. HTHP covers the thermophysical properties of gases, liquids, and solids at all temperatures and under all physical conditions, with special emphasis on matter and applications under extreme conditions, e.g. high temperatures and high pressures. Additionally, HTHP publishes authoritative reviews of advances in thermophysics research, critical compilations of existing data, new technology, and industrial applications, plus book reviews.