{"title":"Evaluation of heat transfer performance of a laboratory-scale polymer rotary air preheater","authors":"Dae-hyun Kim, Jun‐Seok Oh, Sangcho Lee, D. Oh","doi":"10.32908/hthp.v50.1077","DOIUrl":null,"url":null,"abstract":"Regenerative heat exchangers, which increase the temperature of newly supplied air using the waste heat of exhaust gas, are installed in large thermal systems, such as thermal power plants and industrial boilers, to improve their thermal efficiency. These devices are also known as air preheaters, and the rotary regenerative type has been widely used. The heat transfer performance of a rotary regenerator is enhanced as the heat capacity, which is the product of the density and specific heat, increases rather than the thermal conductivity of heat exchanging plates (HEPs). Studies to replace the existing metal materials with polymers, which are resistant to corrosion and inexpensive, have garnered attention. In this study, the heat transfer performance of HEPs fabricated using polytetrafluoroethylene, Mono Cast nylon, stainless steel, and aluminum is experimentally compared using a laboratory-scale experimental setup. It is confirmed that the polymer materials have similar or larger effectiveness compared to metals within the experimental error.","PeriodicalId":12983,"journal":{"name":"High Temperatures-high Pressures","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperatures-high Pressures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.32908/hthp.v50.1077","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Regenerative heat exchangers, which increase the temperature of newly supplied air using the waste heat of exhaust gas, are installed in large thermal systems, such as thermal power plants and industrial boilers, to improve their thermal efficiency. These devices are also known as air preheaters, and the rotary regenerative type has been widely used. The heat transfer performance of a rotary regenerator is enhanced as the heat capacity, which is the product of the density and specific heat, increases rather than the thermal conductivity of heat exchanging plates (HEPs). Studies to replace the existing metal materials with polymers, which are resistant to corrosion and inexpensive, have garnered attention. In this study, the heat transfer performance of HEPs fabricated using polytetrafluoroethylene, Mono Cast nylon, stainless steel, and aluminum is experimentally compared using a laboratory-scale experimental setup. It is confirmed that the polymer materials have similar or larger effectiveness compared to metals within the experimental error.
期刊介绍:
High Temperatures – High Pressures (HTHP) is an international journal publishing original peer-reviewed papers devoted to experimental and theoretical studies on thermophysical properties of matter, as well as experimental and modelling solutions for applications where control of thermophysical properties is critical, e.g. additive manufacturing. These studies deal with thermodynamic, thermal, and mechanical behaviour of materials, including transport and radiative properties. The journal provides a platform for disseminating knowledge of thermophysical properties, their measurement, their applications, equipment and techniques. HTHP covers the thermophysical properties of gases, liquids, and solids at all temperatures and under all physical conditions, with special emphasis on matter and applications under extreme conditions, e.g. high temperatures and high pressures. Additionally, HTHP publishes authoritative reviews of advances in thermophysics research, critical compilations of existing data, new technology, and industrial applications, plus book reviews.