Thermophysical characterization of materials at high temperatures by solving inverse problems within the Bayesian framework of statistics

IF 1.1 4区 工程技术 Q4 Engineering High Temperatures-high Pressures Pub Date : 2021-01-01 DOI:10.32908/hthp.v50.973
P. Masson, H. Orlande
{"title":"Thermophysical characterization of materials at high temperatures by solving inverse problems within the Bayesian framework of statistics","authors":"P. Masson, H. Orlande","doi":"10.32908/hthp.v50.973","DOIUrl":null,"url":null,"abstract":"Inverse heat transfer problems deal with the estimation of parameters or functions appearing in the mathematical formulation of problems in thermal sciences, by utilizing measurements of dependent variables of the formulation. Inverse problems are extremely useful for the indirect measurement of thermophysical properties, in particular for challenging situations involving high temperatures, where coupled multi-physics phenomena and nonlinearities must be taken into account. In this paper, basic inverse problem concepts are reviewed. Solution techniques within the Bayesian framework of statistics are briefly described and applied to two inverse problems related to the authors� experience on the estimation of thermophysical properties at high temperatures.","PeriodicalId":12983,"journal":{"name":"High Temperatures-high Pressures","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperatures-high Pressures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.32908/hthp.v50.973","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Inverse heat transfer problems deal with the estimation of parameters or functions appearing in the mathematical formulation of problems in thermal sciences, by utilizing measurements of dependent variables of the formulation. Inverse problems are extremely useful for the indirect measurement of thermophysical properties, in particular for challenging situations involving high temperatures, where coupled multi-physics phenomena and nonlinearities must be taken into account. In this paper, basic inverse problem concepts are reviewed. Solution techniques within the Bayesian framework of statistics are briefly described and applied to two inverse problems related to the authors� experience on the estimation of thermophysical properties at high temperatures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在贝叶斯统计框架内通过求解逆问题来研究高温下材料的热物理特性
反传热问题处理的参数或函数的估计出现在热学问题的数学公式,利用测量的因变量的公式。逆问题对于热物理性质的间接测量非常有用,特别是在涉及高温的具有挑战性的情况下,必须考虑耦合的多物理现象和非线性。本文综述了反问题的基本概念。在统计贝叶斯框架内的解决技术被简要地描述和应用于两个逆问题有关的作者在高温下估计热物理性质的经验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
High Temperatures-high Pressures
High Temperatures-high Pressures THERMODYNAMICS-MECHANICS
CiteScore
1.00
自引率
9.10%
发文量
6
期刊介绍: High Temperatures – High Pressures (HTHP) is an international journal publishing original peer-reviewed papers devoted to experimental and theoretical studies on thermophysical properties of matter, as well as experimental and modelling solutions for applications where control of thermophysical properties is critical, e.g. additive manufacturing. These studies deal with thermodynamic, thermal, and mechanical behaviour of materials, including transport and radiative properties. The journal provides a platform for disseminating knowledge of thermophysical properties, their measurement, their applications, equipment and techniques. HTHP covers the thermophysical properties of gases, liquids, and solids at all temperatures and under all physical conditions, with special emphasis on matter and applications under extreme conditions, e.g. high temperatures and high pressures. Additionally, HTHP publishes authoritative reviews of advances in thermophysics research, critical compilations of existing data, new technology, and industrial applications, plus book reviews.
期刊最新文献
Experimental study of density, molar volume and surface tension of the liquid Ti-V system measured in electromagnetic levitation Viscosity of molten Cu–M alloys (M = Ni, Al) Determining the density of molten Y2O3 using an electrostatic levitation furnace in the International Space Station Structural, elastic and thermodynamic properties of the binary precipitates γ-TiAl, DO22-Al3Ti and α2-Ti3Al FEM heat transfer modelling with tomography-based SiCf/SiC unit cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1