{"title":"Influence of contact pressure on the thermal contact conductance of layered metallic sheets","authors":"T. Matsushita, I. Belov, A. Johansson, A. Jarfors","doi":"10.32908/hthp.v51.1107","DOIUrl":null,"url":null,"abstract":"For the optimisation of the annealing process of aluminium coils, simulation of the process is often performed. To simulate the process with higher accuracy, reliable input parameters are required, and thermal conductivity (thermal contact conductance) is one of them. In the present study, a method to measure the thermal conductivity and thermal contact conductance of metallic sheets were developed based on the steady-state comparative longitudinal heat flow. The apparatus was built with a compression test machine, and thus it allows to control the pressure to the sample and carry out the measurements at different contact pressure. An equipped heater allows to heat the sample to 573 K. To evaluate the thermal conductance at the interface, a thermal resistance network model was applied. The measurements were carried out with an aluminium alloy (AA3003 sheets). In addition to the thermal contact conductance measurements, the surface roughness of the sheets was also investigated. The semi-empirical equation for the relationship between thermal contact conductance and contact pressure was obtained based on the measurement results.","PeriodicalId":12983,"journal":{"name":"High Temperatures-high Pressures","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperatures-high Pressures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.32908/hthp.v51.1107","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3
Abstract
For the optimisation of the annealing process of aluminium coils, simulation of the process is often performed. To simulate the process with higher accuracy, reliable input parameters are required, and thermal conductivity (thermal contact conductance) is one of them. In the present study, a method to measure the thermal conductivity and thermal contact conductance of metallic sheets were developed based on the steady-state comparative longitudinal heat flow. The apparatus was built with a compression test machine, and thus it allows to control the pressure to the sample and carry out the measurements at different contact pressure. An equipped heater allows to heat the sample to 573 K. To evaluate the thermal conductance at the interface, a thermal resistance network model was applied. The measurements were carried out with an aluminium alloy (AA3003 sheets). In addition to the thermal contact conductance measurements, the surface roughness of the sheets was also investigated. The semi-empirical equation for the relationship between thermal contact conductance and contact pressure was obtained based on the measurement results.
期刊介绍:
High Temperatures – High Pressures (HTHP) is an international journal publishing original peer-reviewed papers devoted to experimental and theoretical studies on thermophysical properties of matter, as well as experimental and modelling solutions for applications where control of thermophysical properties is critical, e.g. additive manufacturing. These studies deal with thermodynamic, thermal, and mechanical behaviour of materials, including transport and radiative properties. The journal provides a platform for disseminating knowledge of thermophysical properties, their measurement, their applications, equipment and techniques. HTHP covers the thermophysical properties of gases, liquids, and solids at all temperatures and under all physical conditions, with special emphasis on matter and applications under extreme conditions, e.g. high temperatures and high pressures. Additionally, HTHP publishes authoritative reviews of advances in thermophysics research, critical compilations of existing data, new technology, and industrial applications, plus book reviews.