Using Label Information in a Genetic Programming Based Method for Acquiring Tag Tree Patterns with Vertex Labels and Wildcards

Shunsuke Yokoyama, T. Miyahara, Yusuke Suzuki, Tomoyuki Uchida, T. Kuboyama
{"title":"Using Label Information in a Genetic Programming Based Method for Acquiring Tag Tree Patterns with Vertex Labels and Wildcards","authors":"Shunsuke Yokoyama, T. Miyahara, Yusuke Suzuki, Tomoyuki Uchida, T. Kuboyama","doi":"10.29007/tfgn","DOIUrl":null,"url":null,"abstract":"Machine learning and data mining from tree structured data are studied intensively. In this paper, as tree structured patterns we use tag tree patterns with vertex and edge labels and wildcards in order to represent label connecting relation of vertices and edges in tree structured data. We propose an evolutionary learning method based on Genetic Programming for acquiring characteristic tag tree patterns with vertex and edge labels and wildcards from positive and negative tree structured data. By using label information, that is, label connecting relation of positive examples, as inappropriate individuals we can exclude tag tree patterns that do not satisfy label connecting relation of positive examples. We report experimental results on our evolutionary learning method and show the effectiveness of using label connecting relation of positive examples.","PeriodicalId":93549,"journal":{"name":"EPiC series in computing","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPiC series in computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29007/tfgn","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning and data mining from tree structured data are studied intensively. In this paper, as tree structured patterns we use tag tree patterns with vertex and edge labels and wildcards in order to represent label connecting relation of vertices and edges in tree structured data. We propose an evolutionary learning method based on Genetic Programming for acquiring characteristic tag tree patterns with vertex and edge labels and wildcards from positive and negative tree structured data. By using label information, that is, label connecting relation of positive examples, as inappropriate individuals we can exclude tag tree patterns that do not satisfy label connecting relation of positive examples. We report experimental results on our evolutionary learning method and show the effectiveness of using label connecting relation of positive examples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遗传规划的标签信息获取带有顶点标签和通配符的标签树模式方法
深入研究了机器学习和树状结构数据的数据挖掘。作为树形结构模式,我们使用带有顶点和边标签和通配符的标记树模式来表示树形结构数据中顶点和边的标签连接关系。提出了一种基于遗传规划的进化学习方法,用于从正、负树结构数据中获取具有顶点、边标记和通配符的特征标签树模式。利用标签信息,即正例的标签连接关系,作为不合适的个体,我们可以排除不满足正例标签连接关系的标签树模式。我们报告了进化学习方法的实验结果,并证明了使用正例标签连接关系的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
ARCH-COMP23 Category Report: Hybrid Systems Theorem Proving ARCH-COMP23 Category Report: Continuous and Hybrid Systems with Linear Continuous Dynamics ARCH-COMP23 Category Report: Continuous and Hybrid Systems with Nonlinear Dynamics ARCH-COMP23 Repeatability Evaluation Report ARCH-COMP23 Category Report: Artificial Intelligence and Neural Network Control Systems (AINNCS) for Continuous and Hybrid Systems Plants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1