An Innovative Method to Improve Model Accuracy by Implementing Multi-models Scheme for 28nm Node and Below

Qing Q. C. Cao, Tianhui Li, Shuying Wang, Deyuan Xiao
{"title":"An Innovative Method to Improve Model Accuracy by Implementing Multi-models Scheme for 28nm Node and Below","authors":"Qing Q. C. Cao, Tianhui Li, Shuying Wang, Deyuan Xiao","doi":"10.33079/jomm.19020304","DOIUrl":null,"url":null,"abstract":": As the process comes into 28nm node and below, lithography struggles stronger between high resolution (high NA) and enough process window especially for hole layers (Contacts and Vias). Taking more care of process window may result in lower image quality of structures and bigger uncertainty in OPC model accuracy. Besides, it is difficult to cover all kinds of test structures within acceptable accuracy in one OPC model because of distinct difference of image quality of different patterns. To solve these problems, this paper introduces an innovative method of applying multi-models in one layer OPC. According to different characteristic features, multiple models are applied respectively and the fitting on these features with poor resolution can be improved by re-optimizing based on related model. A practice for 28 nm Via layer modeling calibration is given, and it shows an evident improvement of model accuracy through the implementing of multiple models scheme.","PeriodicalId":66020,"journal":{"name":"微电子制造学报","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"微电子制造学报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.33079/jomm.19020304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: As the process comes into 28nm node and below, lithography struggles stronger between high resolution (high NA) and enough process window especially for hole layers (Contacts and Vias). Taking more care of process window may result in lower image quality of structures and bigger uncertainty in OPC model accuracy. Besides, it is difficult to cover all kinds of test structures within acceptable accuracy in one OPC model because of distinct difference of image quality of different patterns. To solve these problems, this paper introduces an innovative method of applying multi-models in one layer OPC. According to different characteristic features, multiple models are applied respectively and the fitting on these features with poor resolution can be improved by re-optimizing based on related model. A practice for 28 nm Via layer modeling calibration is given, and it shows an evident improvement of model accuracy through the implementing of multiple models scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用多模型方案提高28nm及以下节点模型精度的创新方法
随着工艺进入28nm及以下节点,光刻技术在高分辨率(高NA)和足够的工艺窗口之间的斗争更加激烈,特别是对于孔层(接触和过孔)。过多地关注过程窗口会导致结构图像质量降低,OPC模型精度的不确定性增大。此外,由于不同模式的图像质量差异较大,很难在一个OPC模型中以可接受的精度覆盖所有测试结构。为了解决这些问题,本文提出了一种在一层OPC中应用多模型的创新方法。根据不同的特征特征,分别应用多个模型,在相关模型的基础上进行再优化,可以改善对分辨率较差的特征的拟合。给出了28 nm Via层模型标定的实践,通过实施多模型方案,模型精度有了明显提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
46
审稿时长
4 weeks
期刊最新文献
Improvement of Environment Stability of an i-Line Chemically Amplified Photoresist Patterning with Organized Molecules New Progress of China's Integrated Circuit Design Industry Nano-Electronic Simulation Software (NESS): A Novel Open-Source TCAD Simulation Environment Influence of Chemical Stability on the Fabrication of MnGa-based Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1