{"title":"A novel nonparametric measure of explained variation for survival data with an easy graphical interpretation","authors":"V. Weiss, Matthias Schmidt, M. Hellmich","doi":"10.3205/000222","DOIUrl":null,"url":null,"abstract":"Introduction: For survival data the coefficient of determination cannot be used to describe how good a model fits to the data. Therefore, several measures of explained variation for survival data have been proposed in recent years. Methods: We analyse an existing measure of explained variation with regard to minimisation aspects and demonstrate that these are not fulfilled for the measure. Results: In analogy to the least squares method from linear regression analysis we develop a novel measure for categorical covariates which is based only on the Kaplan-Meier estimator. Hence, the novel measure is a completely nonparametric measure with an easy graphical interpretation. For the novel measure different weighting possibilities are available and a statistical test of significance can be performed. Eventually, we apply the novel measure and further measures of explained variation to a dataset comprising persons with a histopathological papillary thyroid carcinoma. Conclusion: We propose a novel measure of explained variation with a comprehensible derivation as well as a graphical interpretation, which may be used in further analyses with survival data.","PeriodicalId":39243,"journal":{"name":"GMS German Medical Science","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GMS German Medical Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3205/000222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: For survival data the coefficient of determination cannot be used to describe how good a model fits to the data. Therefore, several measures of explained variation for survival data have been proposed in recent years. Methods: We analyse an existing measure of explained variation with regard to minimisation aspects and demonstrate that these are not fulfilled for the measure. Results: In analogy to the least squares method from linear regression analysis we develop a novel measure for categorical covariates which is based only on the Kaplan-Meier estimator. Hence, the novel measure is a completely nonparametric measure with an easy graphical interpretation. For the novel measure different weighting possibilities are available and a statistical test of significance can be performed. Eventually, we apply the novel measure and further measures of explained variation to a dataset comprising persons with a histopathological papillary thyroid carcinoma. Conclusion: We propose a novel measure of explained variation with a comprehensible derivation as well as a graphical interpretation, which may be used in further analyses with survival data.