{"title":"Bayesian compressive sensing for synthetic-aperture radar tomography imaging","authors":"X. Ren, Y. Qin, L. Qiao","doi":"10.3116/16091833/21/4/191/2020","DOIUrl":null,"url":null,"abstract":"To achieve high-resolution three-dimensional images, a number of imaging methods based on compressive sensing (CS) have been suggested in the recent years for synthetic-aperture radar (SAR) tomography. However, the CS-based methods are sensitive to noise. In this work, we develop a new Bayesian compressive sensing (BCS) imaging method for the SAR tomography. In the framework of BCS, a ‘sparseness’ prior distribution of the imaging scene and an additive noise are properly considered in the imaging process. As a consequence, the BCS-based method under the conditions of low noise levels can provide a better performance than the common norm-based CS methods. The results obtained via simulations of our SAR-tomography imaging method confirm its advantages.","PeriodicalId":23397,"journal":{"name":"Ukrainian Journal of Physical Optics","volume":"21 1","pages":"191-200"},"PeriodicalIF":3.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Journal of Physical Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3116/16091833/21/4/191/2020","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
To achieve high-resolution three-dimensional images, a number of imaging methods based on compressive sensing (CS) have been suggested in the recent years for synthetic-aperture radar (SAR) tomography. However, the CS-based methods are sensitive to noise. In this work, we develop a new Bayesian compressive sensing (BCS) imaging method for the SAR tomography. In the framework of BCS, a ‘sparseness’ prior distribution of the imaging scene and an additive noise are properly considered in the imaging process. As a consequence, the BCS-based method under the conditions of low noise levels can provide a better performance than the common norm-based CS methods. The results obtained via simulations of our SAR-tomography imaging method confirm its advantages.
期刊介绍:
“Ukrainian Journal of Physical Optics” contains original and review articles in the fields of crystal optics, piezo-, electro-, magneto- and acoustooptics, optical properties of solids and liquids in the course of phase transitions, nonlinear optics, holography, singular optics, laser physics, spectroscopy, biooptics, physical principles of operation of optoelectronic devices and systems, which need rapid publication.
The journal was founded in 2000 by the Institute of Physical Optics of the Ministry of Education and Science of Ukraine.