{"title":"CATADIOPTRIC IMAGE DENOISING: A SPATIALLY VARIANT APPROACH","authors":"Tran Dang Khoa Phan, C. Pham","doi":"10.32523/2306-6172-2023-11-2-82-98","DOIUrl":null,"url":null,"abstract":"A catadioptric camera uses a conventional camera in conjunction with a quadratic mirror for capturing an omnidirectional field of view in real-time. The resolution of catadiop- tric images, however, is non-uniform due to the mirror curvature. A widely used approach to processing catadioptric images is to apply classical methods to them directly or via a trans- formed domain. The aim of this work is to demonstrate that for the task of image denoising, an appropriate approach is to modify classical methods so that they become spatially adaptive with the non-uniform resolution of catadioptric images. To this end, we modify the famous Rudin-Osher-Fatemi (ROF) denoising model by introducing a space-variant regularizer. The proposed model comprises a spatially varying total variation term, which adjusts the edge- preservation and the noise reduction abilities in the whole image domain. We carry out an empirical evaluation of the performance of the proposed model compared with the widely used methods for processing catadioptric images. The results reveal that, despite its simplic- ity, our model improves the performance of the original method in terms of both quantitative and qualitative aspects.","PeriodicalId":42910,"journal":{"name":"Eurasian Journal of Mathematical and Computer Applications","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Journal of Mathematical and Computer Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32523/2306-6172-2023-11-2-82-98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
A catadioptric camera uses a conventional camera in conjunction with a quadratic mirror for capturing an omnidirectional field of view in real-time. The resolution of catadiop- tric images, however, is non-uniform due to the mirror curvature. A widely used approach to processing catadioptric images is to apply classical methods to them directly or via a trans- formed domain. The aim of this work is to demonstrate that for the task of image denoising, an appropriate approach is to modify classical methods so that they become spatially adaptive with the non-uniform resolution of catadioptric images. To this end, we modify the famous Rudin-Osher-Fatemi (ROF) denoising model by introducing a space-variant regularizer. The proposed model comprises a spatially varying total variation term, which adjusts the edge- preservation and the noise reduction abilities in the whole image domain. We carry out an empirical evaluation of the performance of the proposed model compared with the widely used methods for processing catadioptric images. The results reveal that, despite its simplic- ity, our model improves the performance of the original method in terms of both quantitative and qualitative aspects.
期刊介绍:
Eurasian Journal of Mathematical and Computer Applications (EJMCA) publishes carefully selected original research papers in all areas of Applied mathematics first of all from Europe and Asia. However papers by mathematicians from other continents are also welcome. From time to time Eurasian Journal of Mathematical and Computer Applications (EJMCA) will also publish survey papers. Eurasian Mathematical Journal publishes 4 issues in a year. A working language of the journal is English. Main topics are: - Mathematical methods and modeling in mechanics, mining, biology, geophysics, electrodynamics, acoustics, industry. - Inverse problems of mathematical physics: theory and computational approaches. - Medical and industry tomography. - Computer applications: distributed information systems, decision-making systems, embedded systems, information security, graphics.