Use of Mesenchymal Stem Cell-Conditioned Medium to Activate Islets in Preservation Solution.

N. Kasahara, T. Teratani, J. Doi, Yuki Iijima, M. Maeda, S. Uemoto, Y. Fujimoto, N. Sata, Y. Yasuda, E. Kobayashi
{"title":"Use of Mesenchymal Stem Cell-Conditioned Medium to Activate Islets in Preservation Solution.","authors":"N. Kasahara, T. Teratani, J. Doi, Yuki Iijima, M. Maeda, S. Uemoto, Y. Fujimoto, N. Sata, Y. Yasuda, E. Kobayashi","doi":"10.3727/215517913X666477","DOIUrl":null,"url":null,"abstract":"Pancreatic islet transplantation has received widespread attention as a promising treatment for type 1 diabetes. However, islets for transplantation are subject to damage from a number of sources, including ischemic injury during removal and delivery of the donor pancreas, enzymatic digestion during islet isolation, and reperfusion injury after transplantation in the recipient. Here we found that protein fractions secreted by mesenchymal stem cells (MSCs) were capable of activating preserved islets. A conditioned medium from the supernatant obtained by culturing adipose tissue MSCs (derived from wild-type Lewis rats) was prepared for 2 days in serum-free medium. Luc-Tg rat islets to which an organ preservation solution was added were then incubated at 4°C with fractions of various molecular weights prepared from the conditioned medium. Under the treatment with some of the fractions, by 4 days the relative luminescence intensities (representative of the ATP levels of the cold-preserved islets) had increased to over 150% of their initial values. Our novel system may be able to restore isolated islets to the condition they were in before transport, culture, and transplantation.","PeriodicalId":9780,"journal":{"name":"Cell medicine","volume":"5 2-3 1","pages":"75-81"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3727/215517913X666477","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3727/215517913X666477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Pancreatic islet transplantation has received widespread attention as a promising treatment for type 1 diabetes. However, islets for transplantation are subject to damage from a number of sources, including ischemic injury during removal and delivery of the donor pancreas, enzymatic digestion during islet isolation, and reperfusion injury after transplantation in the recipient. Here we found that protein fractions secreted by mesenchymal stem cells (MSCs) were capable of activating preserved islets. A conditioned medium from the supernatant obtained by culturing adipose tissue MSCs (derived from wild-type Lewis rats) was prepared for 2 days in serum-free medium. Luc-Tg rat islets to which an organ preservation solution was added were then incubated at 4°C with fractions of various molecular weights prepared from the conditioned medium. Under the treatment with some of the fractions, by 4 days the relative luminescence intensities (representative of the ATP levels of the cold-preserved islets) had increased to over 150% of their initial values. Our novel system may be able to restore isolated islets to the condition they were in before transport, culture, and transplantation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用间充质干细胞条件培养基激活保存液中的胰岛。
胰岛移植作为一种有前景的治疗1型糖尿病的方法受到了广泛的关注。然而,用于移植的胰岛会受到多种来源的损伤,包括供体胰腺移除和运送过程中的缺血性损伤、胰岛分离过程中的酶消化以及受体移植后的再灌注损伤。在这里,我们发现间充质干细胞(MSCs)分泌的蛋白质片段能够激活保存的胰岛。从培养脂肪组织间充质干细胞(来源于野生型Lewis大鼠)获得的上清液中制备条件培养基,在无血清培养基中培养2天。加入器官保存液的Luc-Tg大鼠胰岛与从条件培养基中制备的不同分子量的馏分在4°C下孵育。在部分组分处理下,4天后相对发光强度(代表冷保存胰岛的ATP水平)增加到初始值的150%以上。我们的新系统可能能够将孤立的胰岛恢复到运输、培养和移植之前的状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell medicine
Cell medicine MEDICINE, RESEARCH & EXPERIMENTAL-
自引率
0.00%
发文量
0
期刊最新文献
Critical Shifts in Cerebral White Matter Lipid Profiles After Ischemic-Reperfusion Brain Injury in Fetal Sheep as Demonstrated by the Positive Ion Mode MALDI-Mass Spectrometry. Cryopreserved Alginate-Encapsulated Islets Can Restore Euglycemia in a Diabetic Animal Model Better than Cryopreserved Non-encapsulated Islets. MicroRNAs as Key Regulators of Ovarian Cancers. A Case of Acute Lymphocytic Leukaemia with t(3;13) and Central Nervous System Leukemia after Allogenic Cord Blood Transplantation. Unsurpassed Intrahepatic Islet Engraftment - the Quest for New Sites for Beta Cell Replacement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1