A Combination of Low-Intensity Pulsed Ultrasound and Nanohydroxyapatite Concordantly Enhances Osteogenesis of Adipose-Derived Stem Cells From Buccal Fat Pad.

Rika Nagasaki, Y. Mukudai, Y. Yoshizawa, M. Nagasaki, Sunao Shiogama, Maiko Suzuki, S. Kondo, S. Shintani, T. Shirota
{"title":"A Combination of Low-Intensity Pulsed Ultrasound and Nanohydroxyapatite Concordantly Enhances Osteogenesis of Adipose-Derived Stem Cells From Buccal Fat Pad.","authors":"Rika Nagasaki, Y. Mukudai, Y. Yoshizawa, M. Nagasaki, Sunao Shiogama, Maiko Suzuki, S. Kondo, S. Shintani, T. Shirota","doi":"10.3727/215517915X688057","DOIUrl":null,"url":null,"abstract":"The osteogenic induction of adipose-derived stem cells (ADSCs) has been regarded as an important step in bone tissue engineering. In the present study, we focused on the buccal fat pad (BFP) as a source of adipose tissue, since BFPs are encapsulated by adipose tissue and are often coextirpated during oral surgery. Low-intensity pulsed ultrasound (LIPUS) is effective in the treatment of fractures, and nanohydroxyapatite (NHA) is known as a bone substitute material. Here we investigated the synergistic effects of LIPUS and NHA in the osteogenesis of ADSCs. A combination of LIPUS irritation and NHA as a scaffold significantly increased the osteogenic differentiation of ADSCs in vitro, and in our in vivo study in which ADSCs were transplanted into calvarial bone defects of nude mice, the combinational effect greatly enhanced the new bone formation of the margin of the defects. These results demonstrate that synergistic effects of LIPUS and NHA are capable of effectively inducing the differentiation of ADSCs into osteoblasts, and they suggest a novel therapeutic strategy for bone regeneration by the autotransplantation of ADSCs.","PeriodicalId":9780,"journal":{"name":"Cell medicine","volume":"76 1","pages":"123-31"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3727/215517915X688057","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3727/215517915X688057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

The osteogenic induction of adipose-derived stem cells (ADSCs) has been regarded as an important step in bone tissue engineering. In the present study, we focused on the buccal fat pad (BFP) as a source of adipose tissue, since BFPs are encapsulated by adipose tissue and are often coextirpated during oral surgery. Low-intensity pulsed ultrasound (LIPUS) is effective in the treatment of fractures, and nanohydroxyapatite (NHA) is known as a bone substitute material. Here we investigated the synergistic effects of LIPUS and NHA in the osteogenesis of ADSCs. A combination of LIPUS irritation and NHA as a scaffold significantly increased the osteogenic differentiation of ADSCs in vitro, and in our in vivo study in which ADSCs were transplanted into calvarial bone defects of nude mice, the combinational effect greatly enhanced the new bone formation of the margin of the defects. These results demonstrate that synergistic effects of LIPUS and NHA are capable of effectively inducing the differentiation of ADSCs into osteoblasts, and they suggest a novel therapeutic strategy for bone regeneration by the autotransplantation of ADSCs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低强度脉冲超声和纳米羟基磷灰石联合促进颊脂肪垫脂肪干细胞成骨。
脂肪源性干细胞(ADSCs)的成骨诱导已被认为是骨组织工程的重要一步。在本研究中,我们将重点放在作为脂肪组织来源的颊脂肪垫(BFP)上,因为BFP被脂肪组织包裹,并且在口腔手术中经常被共同摘除。低强度脉冲超声(LIPUS)在骨折治疗中是有效的,纳米羟基磷灰石(NHA)被认为是一种骨替代材料。我们研究了LIPUS和NHA在ADSCs成骨中的协同作用。LIPUS刺激联合NHA作为支架,在体外显著增加了ADSCs的成骨分化,在我们将ADSCs移植到裸鼠颅骨骨缺损的体内研究中,这种联合作用大大增强了缺损边缘的新骨形成。这些结果表明,LIPUS和NHA的协同作用能够有效地诱导ADSCs向成骨细胞分化,并为ADSCs自体移植骨再生提供了一种新的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell medicine
Cell medicine MEDICINE, RESEARCH & EXPERIMENTAL-
自引率
0.00%
发文量
0
期刊最新文献
Critical Shifts in Cerebral White Matter Lipid Profiles After Ischemic-Reperfusion Brain Injury in Fetal Sheep as Demonstrated by the Positive Ion Mode MALDI-Mass Spectrometry. Cryopreserved Alginate-Encapsulated Islets Can Restore Euglycemia in a Diabetic Animal Model Better than Cryopreserved Non-encapsulated Islets. MicroRNAs as Key Regulators of Ovarian Cancers. A Case of Acute Lymphocytic Leukaemia with t(3;13) and Central Nervous System Leukemia after Allogenic Cord Blood Transplantation. Unsurpassed Intrahepatic Islet Engraftment - the Quest for New Sites for Beta Cell Replacement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1