Shingo Yamashita, K. Ohashi, R. Utoh, T. Okano, Masakazu Yamamoto
{"title":"Human Laminin Isotype Coating for Creating Islet Cell Sheets.","authors":"Shingo Yamashita, K. Ohashi, R. Utoh, T. Okano, Masakazu Yamamoto","doi":"10.3727/215517915X689029","DOIUrl":null,"url":null,"abstract":"Our experimental approach toward the development of new islet-based treatment for diabetes mellitus has been the creation of a monolayered islet cell construct (islet cell sheet), followed by its transplantation into a subcutaneous pocket. Previous studies describe rat laminin-5 (chain composition: α3, β3, γ2) as a suitable extracellular matrix (ECM) for surfaces comprised of a coated temperature-responsive polymer, poly(N-isopropylacrylamide) (PIPAAm). To progress toward the clinical application of this approach, the present study attempted to identify an optimal human ECM as a coating material on PIPAAm surfaces, which allowed islet cells to attach on the surfaces and subsequently to be harvested as a monolithic cell sheet. Dispersed rat islet cells were seeded onto PIPAAm dishes coated with various human laminin isotypes: human laminin (HL)-211, HL-332, HL-411, HL-511, and HL-placenta. Plating efficiency at day 1, the confluency at day 3, and glucose-stimulated insulin secretion test at day 3 were performed. The highest value of plating efficiency was found in the HL-332-PIPAAm group (83.1 ± 0.7%). The HL-332-PIPAAm group also showed the highest cellular confluency (98.6 ± 0.5%). Islet cells cultured on the HL-332-PIPAAm surfaces showed a positive response in the glucose-stimulated insulin secretion test. By reducing culture temperature from 37°C to 20°C in the HL-332-PIPAAm group, cells were able to be harvested as a monolithic islet sheet. The present study showed that HL-332 was an optimal human-derived ECM on a PIPAAm coating for preparing islet cell sheets.","PeriodicalId":9780,"journal":{"name":"Cell medicine","volume":"8 1-2 1","pages":"39-46"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3727/215517915X689029","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3727/215517915X689029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Our experimental approach toward the development of new islet-based treatment for diabetes mellitus has been the creation of a monolayered islet cell construct (islet cell sheet), followed by its transplantation into a subcutaneous pocket. Previous studies describe rat laminin-5 (chain composition: α3, β3, γ2) as a suitable extracellular matrix (ECM) for surfaces comprised of a coated temperature-responsive polymer, poly(N-isopropylacrylamide) (PIPAAm). To progress toward the clinical application of this approach, the present study attempted to identify an optimal human ECM as a coating material on PIPAAm surfaces, which allowed islet cells to attach on the surfaces and subsequently to be harvested as a monolithic cell sheet. Dispersed rat islet cells were seeded onto PIPAAm dishes coated with various human laminin isotypes: human laminin (HL)-211, HL-332, HL-411, HL-511, and HL-placenta. Plating efficiency at day 1, the confluency at day 3, and glucose-stimulated insulin secretion test at day 3 were performed. The highest value of plating efficiency was found in the HL-332-PIPAAm group (83.1 ± 0.7%). The HL-332-PIPAAm group also showed the highest cellular confluency (98.6 ± 0.5%). Islet cells cultured on the HL-332-PIPAAm surfaces showed a positive response in the glucose-stimulated insulin secretion test. By reducing culture temperature from 37°C to 20°C in the HL-332-PIPAAm group, cells were able to be harvested as a monolithic islet sheet. The present study showed that HL-332 was an optimal human-derived ECM on a PIPAAm coating for preparing islet cell sheets.